Roll No. 1

18102

B. Tech. I - Sem. UD (Main / Back) Exam., Jan. - 2020 IFY2 - 02 Engineering Physics Admitted Batch: 2018 - 19 & 2019 - 20

Time: 3 Hours

Maximum Marks: 100

Total No of Pages: 2

Min. Passing Marks: 33

Instructions to Candidates:

PART - A: Short answer questions (up to 25 words) 10 × 2 marks = 20 marks.

All ten questions are compulsory.

PART - B: Analytical/Problem Solving questions (up to 100 words) 6×5 marks=30 marks.

Candidates have to answer six questions out of eight.

PART - C: Descriptive/Analytical/Problem Solving questions 5×10 marks = 50 marks.

Candidates have to answer five questions out of seven.

NIL

2. NIL

ersahilkagyan.com

PART - A

- Q.1 What is Newton's ring?
- Q:2 State Bragg's law.
- Q.3 What is wave function?
- Q.4 State Heisenberg's uncertainty principle.
- Write two applications of optical fibers.
- Q.6 What is Coherence?
- Q.7 What is a 'LASER'?
- Q.8 What is population inversion?
- Q.9 Define the terms: Valence band and Conduction band.
- Q-10 State Faraday's Law.

[18102]

PART - B

- Q.1 Describe Fraunhofer's diffraction due to a single slit and deduce the positions of maxima and minima.
- Q.2 What do you understand by resolution? Explain the resolving power of a telescope.
- Q.3 Derive Schrodinger's time independent wave equation.
- QA Calculate the permitted energy levels of an electron in a box 1 Å wide.
- Q.5 The refractive index of core of an optical fibre is n₁=1.45 and the relative refractive index difference is 0.01. Find maximum angle of acceptance for this fibre.
- Q.6 Prove that in high frequency region laser action is not possible.
- And What do you mean by an intrinsic semiconductor? Can it behave as an insulator?
- Q& What is Biot-Savart law? Discuss its application.

PART - C

ersahilkagyan.com

- Q.1 A parallel beam of light of two wavelength 6000Å and 6000.5Å falls normally on a diffraction grating 10 mm wide. At a certain diffraction angle θ these lines are close to be being resolved. Find θ.
- Q.2 Write down the Schrodinger's equation for a particle enclosed in one dimensional box of size 'a'. Solve it for eigen values and eigen functions.
- Q.3 What do you mean by spatial and temporal coherence for propagating waves? Show the visibility is measure of degree of coherence.
- Q4 Describe the construction and working of He-Ne Laser.
- Q.5 What is Hall Effect? Give an elementary theory of Hall Effect. Obtain the expression for Hall coefficient in terms of Hall voltage.
- Q.6 Derive Maxwell's equations from the basic laws of electromagnetism.
- Q.7 Write short notes on-
 - (a) Poynting Vector
 - (b) Laplace's and Poisson's equations.

[18102]