Roll No.

Total No of Pages: 2

## 18101

B. Tech. I - Sem. UD (Main / Back) Exam., Jan. - 2020 IFY2 - 01 Engineering Mathematics - I Admitted Batch: 2018 - 19 & 2019 - 20

Time: 3 Hours

Maximum Marks: 100

Min. Passing Marks: 33

Instructions to Candidates:

PART - A: Short answer questions (up to 25 words) 10 × 2 marks = 20 marks.

All ten questions are compulsory.

PART - B: Analytical/Problem Solving questions (up to 100 words) 6×5 marks=30 marks.

Candidates have to answer(six questions out of eight.

PART - C: Descriptive/Analytical/Problem Solving questions 5×10 marks = 50 marks.

Candidates have to answer five questions out of seven.

J. NIL

2. NIL

# ersahilkagyan.com

# PART - A

- Q.1 What are the value of integral  $\int_0^\infty e^{-x^2} dx$ ?
- Q.2 Write the formula for surface area of solid of revolution when the revolution is about y axis.
- Q.3 Show the sequence  $\{x_n\}$ , where  $x_n = \frac{2n-72}{3n+23}$  converges to  $\frac{2}{3}$ .
- Q4 Find the value of  $a_0$  for the function f(x) = |x| in the interval  $(-\pi, \pi)$ .
- Q.5 Show that  $\lim_{(x,y)\to(0,0)} \frac{2x-y}{x^2+y^2}$  does not exist.
- Q6 State the necessary and sufficient condition for the minimum of a functions f(x, y).
- If  $u = e^{xyz}$ , find  $\frac{\partial^2 u}{\partial y \partial z}$ .
- Evaluate  $\int_0^b \int_0^x xy \, dx dy$ .
- Q.9 State the Gauss divergence theorem.
- Q.10 If  $\vec{F} = xy^2\hat{i} + 2x^2yz\hat{j} 3yz^2\hat{k}$ , find div  $\vec{F}$  at the point (1, -1, 1).

- Q.1 Examine the convergence of the series  $u_n = \frac{\sqrt{n}}{3n-1}$ .
- Q.2 Let  $f(x,y) = \begin{cases} \frac{x^3 y^3}{x^2 y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$
- then show that the function f is not differentiable at the origin.
- Find the Fourier series for the function f(x) = x,  $-\pi < x < \pi$ .
- Q.4 State Euler's theorem and if  $u = \tan^{-1} \left( \frac{x^3 + y^3}{x y} \right)$ , then prove that
  - $x\frac{\partial u}{\partial y} + y\frac{\partial u}{\partial y} = \sin 2u$ .
- Find the points where the function  $x^3 + y^3 3axy$  has maximum or minimum value.
- Q.6 Evaluate  $\int_{0}^{\infty} \int_{0}^{\infty} \frac{e^{-y}}{y} dxdy$  by changing the order of integration.
- Q.7 If  $\vec{r} = x\hat{i} + y\hat{i} + z\hat{k}$  and  $r = |\vec{r}|$ , then prove that - $\operatorname{div} \mathbf{r}^{n} \mathbf{r} = (n+3) \mathbf{r}^{n}.$

Hence, show that  $r^n \vec{r}$  will be solenoidal if n = -3.

Q.8 Prove that equation:

$$\int_0^{\pi/2} \frac{d\theta}{\sqrt{(a\cos^4\theta + b\sin^4\theta)}} = \frac{\left\{\Gamma \frac{1}{4}\right\}^2}{4(ab)^{\frac{1}{4}}\sqrt{x}}$$

## PART – C

- Q.1 Use beta and gamma functions, to evaluate
  - (a)  $\int_0^\infty \frac{x}{1+x^6} dx$
  - (b)  $\int_0^1 \sqrt{\left(\frac{1-x}{x}\right) dx}$  ersahilkagyan.com
- Q.2 Test the convergence of the series:

$$1 + \frac{1}{2}x + \frac{1.3}{2.4}x^2 + \frac{1.3.5}{2.4.6}x^3 + \dots$$

Q.3 Find the Fourier series for the function  $f(x) = x \sin x$ ,  $-\pi < x < \pi$  and deduce that :

$$\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1.3} - \frac{1}{3.5} + \dots$$

 $\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1.3} - \frac{1}{3.5} + \dots$ Q.4 If u = f(r), where  $r^2 = x^2 + y^2$ , then prove that -

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$$

- Q.5 Evaluate  $\int_0^a \int_0^{\sqrt{a^2-x^2}} y^2 \sqrt{x^2+y^2} dxdy$  by changing into polar coordinates.
- Q.6 Evaluate  $\int_0^{\log 2} \int_0^x \int_0^{x+\log y} e^{x+y+z} dxdydz$
- Q.7 Verify Stoke's theorem for the vector function  $\vec{F} = x^2\hat{i} + xy\hat{j}$ , where C is the perimeter of the square in xy – plane whose sides are along the lines x = 0, y = 0, x = a and y = a.