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Instructions to Candidates :

Attempt all ten questions from Part A, five questions
of five from Part C. Schematic diagrams must be shown
assumed and stated clearly. Units of quantities used,/calculat

out of seven questions from Part B and four questions out
wherever necessary. Any data you feel missing may suitably be
ed must be stated clearly.

PART - A

(Answer should be given up to 25 words only). All questions are compulsory. (10 x 2 = 20)
1. Prove that for any two sets A and B : A — (AnB)=A-B,

2. Give anexample of a partially ordered set which is not a lattice.

3.  Show that the multiplicative group G = {1, -1, i, -i} is cyclic. Find its generators,

4. Definz finite state Machines.

5. Find the minimum number of students in a school to be sure that 5 of them are born in the same month,
6. Prove that o? is an even integer, then « is an even integer.

7. Find the generating function for the sequence {1,1,0,0, 1, 1,1, ... w},

8. Prove that these graphs G, G,and G,, G, are non-isomorphic.

9. Find the domain of the following function :

[ [ Sx-x*
f'(x):v’log( p ]

10. In how many ways can a team of || cricketers be chosen for 6 t

how owlers, 4 wicket keepers and 11 bat
majority of batsman so that at least 4 bowlers are there and | wick

stan to give
etkeeper?

PART - B

. (Analytical/Probiem solving questions), Attempt any five questions, (5 x 8 = 40)
1. (@  Write the scope and objective of DMS in Computer Science? (4)
(b)  Inatest 70% of the candidates passed in Science, 65% in Mathematics, 27% failed i : .
? y & € t
and 124 passed in both the subjects. Find t * red In both Science and Mathematics

he total number of candidates for the test.
2. Showthat inthe power set P(A) of all

subsets of a set A = {a,b,c}, ‘Se

- tinclus: .
e Bt ram for (P e Inclusion, C’ is a partial order relatmn(g\is; d_ra;v
3. (@  Solve the recurrence relations — _( 4)

a,-5a,,+6a,_,=3n"-2n+| )

4 g:)) IP;T:,bg i_r_',dléaio; th?t sum of the cubes of three consecutive integers is divisible by 9.
g(x)=‘x v Sg:::.g 8 R = R where R js the :se_t of real numbers. Find gof and fog where f(x) = x> _ 2
are Injective, surjective or bijective.

(4)
and

4)

whether these functions
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(b)

e

-

1.7 LetR={(1.2),(2.3),(3, 1)} and A = {1, 2, 3}. Find reflexive, symmetric and transitive closure of R using :

[ ]

- the fin : f, ,wherel-{a,b}s~{sg,8},
Draw the transition diagram of the finite state machine M (I, S, O, sp, g) ).

0= {0, 1} and the transition table is as follows :
e Bl
a b a b
L
L S Si~_ Sy 0 1
i Sl ~ SU S] l 0
Also, find the output string for the inputbba a. 4x2=9)
Define and explain the following by suitable examples : o e
; soi . i
(i) Cyclic group (i) Order of an element in a group (iii) Field (iv) Zerodivisorofa ﬁ8(4)
(@  Show that ~ (pv(~ p AQ)) = (~ p) A(~ q) (without truth table) . e
(b)  Write contrapositive converse and inverse of the statement “The home team wins whenever it is ramning. 2 (it;
construct the truth table for each statement.
(4x2=28)

Write short notes on the following :
(a) Planar graphs

(b) lsomorphism of graphs (c) Cut sets (d) Vertex connectivity.,

PART - C

(Descriptive/Analytical/Problem Solving/Design question). Atlempt any four questions. (4 x 15 = 60)

(5x3=215)
(a) Composition of relation R (b) Composition of matrix relation R (c) Graphical representation of R
{a)  Define Bounded lattices. complement of an element of a lattices and distributive lattices. (6)
(b) Let(L, <)be abounded distributive Lattice, if an element a ¢ L, has a complement then it is unique. - (9)
(a)  Find the shortest path from a to z in the following graph : (5)
(b)  Suppose thata connected planar graph has 30 vertices, each of degree three. Into how many regions is the ﬁ!ane
divided by a planar representation of this graph. . ) ) (5)
(c) Let G be the set of all non-zero real numbers and Let axb = —, then show that (G, *)isan abehan group. (5)
(a) ()bta:’n(llu:bl’rirncipa disjunct;vc normal forms of (p Aq)v (~ PATIV(qQAT). (5)
(b)  Let A(G) be the maximum of the degrees of the vertices of a graph : .
chromatic number of graph, graph G then K(G) < 1+ A(G) where K(G) is the
; ; (n-1) (3)
4 : graph with n - vertices there are ~—2 ¢ o
(c)  Inacomplete graph with n- vertices there are 5 edgedisjoint Hamiltonian circuits, if n is an odd number > 3.
a Define tautology and prove the following : i . (5)
(a) gy
{((p—q)~p) —q istautology . (4)
(b)  Define fallacy and prove the following :
(prq)v~(pAQ) is A fallacy o 4)
et (m, *) be a semi group and a € msuch that the equatlons a*u =y B )
(&) Letim, o) “and v * a = x have solutions in M for all

x € M. Show that (M, *)isa monoid.
(7

Qag
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' ‘Forexample, 23 mod 5=3, 18 mod 6 =0, 23 div5=4,
and 5.div 6=0. .

. The mod function can determine the day of the week
in n days from a given day.

Wefine the proof by contradiction with example.
[R.TU. 2016, 2013)

m
Ans. Proof by contradiction : If in same case we have
that

~p —q,is true . (A)
and also
~p—>q,is false vz (3)

But these are contradictory. As (A) and (B) are in
contradiction one of them is false. :

Ex. : Proove by contradictory that if

X +y> 15 then eitherx>10ory> 5
Sol. We assume the hypothesis x + y > 15. From here we
must conclude that x > 10 or y > 5. '

Assume to the contrary that

X>10o0ry> 35, is false

sox<l0andy<5$

Adding both inequalities we get

XTy<I0+5=15

which contradicts the hypothesis

X+y>15

From here we conclude that the assumption “x < 10 and
y < 57 cannot be true, .

So “x > 10” or “y > 5” must be true.

E.H;et J: R = R be a function defined as JSX)=3X+5
and g: R — R be another function defined as g (X)

= X+4. Find (gof)” and f ~og™ and verify (gop)~' =
S log™ [R.T.U. 2015]

Ans. Given that,
fx)=3x+5, and so, x = (f- 5)/3, i.e., £' = (x—5)/3
g(x)=x+4 andso,x=(g-4) ,ie, gl=x—-4
Now,
gof = g(f(x))
=#{Ax +5)
=(3x+5)+4
=3x+9
Now, x = ((gof) - 9)/3
So, (gof)™" = (x - 9)/3

Now,

Flog™ = 1(g(x))

=fl(x-q)

=((x-4)-5y3
[P

{
.
=(x-9)/3
Hence, we see that (gof)™' = flog™!
e —

Q.13 Define the ceiling function with example
{R
Ans, Ceiling Functions : The closely-relate
function, denoted by [ ]or ceil(x) or'ceiling (
function that returns the smallest integer nor less
formally.
[x |=min {neZ:x<n}
For example, ceiling (2.3) =3, ceiling (2)=2 ¢
(-2.3)=-2.
The names "floor" and "ceiling" and the corr
notations were introduced by Kenneth E. Iverson
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-3 2 -1 0 1 2 3

Fig. : The ceiling function

%’
Q.14 Define the remainder Junction with exan
[A

Ans. Remainder Function : A remainder function
denoted by 'mod' or symbol '%'") is one which [
numbers say, a,b returns the remainder when a is ¢
b,i.e."amod b" is the remainder when a is divided
5mod 2 =1 (remainder when 5 is divided by
11 mod 3 =2 (remainder when 11 is divided

%
Q.15 Define the Reflexive relation, [

Ans. Reflexive Relation : A relation R on a non-
is known as reflexive relation if each member «
related to itself, i.e. x R x or (x.x)e R, v x cA

Arelation R ona set A is irreflexve if (x,x)e R

Example 1. Let A be the set of all straight
plane. The relation R in A defined by “x is parall
reflexive, since every straight line is paralle! to its

S A A S R

P A N S T



re R is the set of
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x>+ 8x+ 14 is 14.
of =x?+2is 2.

1is given for
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lagram for the

IRTU. 2019

%

c
Hasse diagram

Q@Write the scope and objective of DMS in Computer

Science?

M. |

Ans. Scope of D.M.S. : Though discrete mathematics has

found application in almost every conceivable area of study.
It is integral part of science course. It provides the -
mathematical foundation for many computer courses viz -

algorithms, database management, automata, com piler theory,
operating system, computer language, to name a few with
wrong mathematical foundation, these computer science
subject become easy to understand.

Objectives :The objectives of this course is to provide

the fundamental and concepts of Discrete Mathematical
Structures with application of computer science including

ma.ther.natic-:al l‘ogic, Boolean Algebra, and its applications,
switching circuits and logic gates, Groups and Trees, Important”.

;:g:puter theorem with constructiye proofs, real life problems
undeir:la};lzjs,] theoretic a gorithms, to help the students 10
the computationg] and algorithmic assects of sets,

relations functio d

’ nsan algcbric Stru 1 ter
i . ctu mpuiet.

science and jtg application, re in field of compt™

[R.T.U. 2019
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et A=Z the set of integers Relation R defined by A
by aRb as ‘a is congruent to b mod 2’. Show that R
-is an equivalence relations. L IR.T.U. 2013, 12/
OK _
Define congruency relation in Modulo system. If
A = Z (the set of integers), Relation R defined in A
set by aRb as “a is congruent to b mod 2”, then
prove that R is an equivalence relation. [R.T.U, 2017/
OK
Let A = Z, the set of integers relation R define in A
by aRkb as “a congruent to b mod 2”. Prove that R Is
an,equivalence relation, [R.T.U. 2014/

h(mod?2) ie a—bisdivisible by 2

¥ w4 s

Ans. Here B 15

a 2

or ua—bismultiple of 2.
(i) Reflexive @ Let ac A, then
a—a=0=107(2)amultiple of 2
v allu

R is reflexive,
(ii) Symmetric: Let a, be A, then

aith = a=h(mod 2) = a-bisdivisible by 2
- a-b =2k keZ
— b-—a=-2k=2-k), ke’
—  h=a(mod 2)
= bRu

R is symmetric.
(iii) Transitive: Let a, b, c€A, then
aRb = a - b = 2k; kel
bRc = b — ¢ = 2ky; kyeZ
Fromeq. (i) + (i)
= a-c=2k +tk)kt k,el
a = ¢ (mod 2)
aRce
R is transitive.

(i)

=
=

Hence, it is an equivalence relation.

Now, tc
Letae Abear
relation on A
(a,a) e S. Hei

Now, S
then, (a,b) € |
hence, (b, a) «
1]131 R Sis

Suppos

“Then, (4, b),

transitive, (a,
15 transitive, (
(a,c) € R an
R Sistrans
Theref

b - — o
().30An equi
into equi
complete
such dis

Prove |
decomy.
either «
set A i
classes

Ans. By the dc
[a] c A. Wen
since A is refle
Hence A < |
establishes (i
[ajn[b]=¢ fi
[a] ~ [b] = 0.
means that ¢
R is symmetri
that the concl

The pr¢
xRa, since aR

| thatx € [b]. 1
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Ans.(i) If possible, let g an

Q.3 Prove, for finite sets A and B; Then by the definitic

n(A UB)=n(4) + n(B) —n(A N B) - gf=1fg:

@' In a class of 50 students, 15 play Tennis, 20 and h.f = f.l.r

play Cricket and 20 play Hockey, 3 play Tennis where | is an identity

and Cricket, 6 play Cricket and Hockey, and 5 h=hl:

play Tennis and Hockey, 7 play no game at =(hf

all. How many play Cricket, Tennis and =1g

Hockey? [R.TU. 2014} =g
—_— _ So h= g
Ans.(i) We know that _ tistive tiis yasil

(A-B)U(AnB)U(B-A)=AUB ~(1) | Ans: (ii) Proof : Let’s cour

and A - B, A" B and B - A are pair wise disjoint
therefore,

n(A u B) =n(A-B)+n(A N B)+n(B-A)

..(2)
Further A=(A-B)U(ANnB)
and (A-BYn(AnB)=4¢
50 n(A) =n(A - B) + n(A N B) ..(3)
Similarly
‘ n(B) = n(A N B) + n(B — A) . (4)

Adding (3) and (4). we have
n(A) +n(B)= {n(A - B)+n(A N B)
+n(B - A)} + n(A N B)
=n(A U B)* n(A n B)[Using (2)]
Thus
n(A U B)=n(A) + n(B) - n(A N B)
LetA = Student play Tennis
B = Student play Cricket
C = Student play Hockey
so n(A)=15; n(B) = 20; n(c) =20;
N(AnB)=3;n(BNC)=6;nA NC)=35
50 students in the class in which 7 play no game at

Ans.(i)

all so
NAUBUC)=50-7=43

Now number of students those play Cricket, Hoc}\ey
and Tennis is

N(ANBNC)=n(AwBuUCQC)-n(A)
=n(B) -n(C) + n(ANB) + n(BNC)+n(C N A)
=43 -15-20-20+3+6+5
=57-55

=2

Q.32() If f: A - B be onc-one onto then the inverse
map of [ is unique. Prove it.

(i) Show that set of even positive integers is a

countable set. [R.T.U. 2014]

positive integers. We do tha
with the counting numbers:
12345678
24681012141
This correspondence ¢
no even number that does
number. We can only deduc
number of elements. This n
is straightforward. The set |
same number of elements
They are both infinite sets
integers (positive and nega
So does the set of all inte
all countable sets, because
elements as the counting nu

%
Q.33 Compute the number

elements.,

Ans. Here n=4

Thus the number of p

=5(4, 1) + S(4

Now S(4,1)=1=¢
S(4,2) =83,
S(4,3) = 5(3,
Since S(@3, 2) = S(2,
~Now §(2,1) =2,
Thus eq.(5) gives
$(3,2)=1+2
From (3)
S(4.0=1+3
From (4)

S(4,3) =3 +3
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w, we add arrow 1 to [ since |
2 and 3 to 3. Again we add arrgy,
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Pigeonhole principle and the Extendeg

principle also prove botll:. [RTU. 2012
OR
prove the gencralized pigeonhole
IR.T.U. 2017
OR

Explain pigeonliole and extended pigeonhole
principle with example.

[R.T.U. 2010
OR

State and prove the Pigeonhole and Generalized
Pigeonhole Principles.

[RT.U. 2014]

Ans. Pigeonhole Principle
[f n pigeonholes are occupied by n pigeons and m>n

pigeonhole is occupied by more than one

principle is nothing more than the
if you have fewer pigeon holes than pigeons

Ty pigeon in a pigeon hole, then there must

more than one pigeon. It

be as a proof strategy.

also known as Dirichlet’s

. s that, given two natural
mwithn >m, if p

Principle is an example of a counting
b€ applied to many formal problems,
€ sets that cannot be put into

can

igeonhole Principle

located to 1 containers, then at
0ld no fewer thap [n/m] objects;

—]

:

L] 4 . .
DMS 1] = i ceiling function, denoting the smallest integer

here [X
;Vr er than or equal to x. s ‘ =
arg A probabilistic generalization of the pigeonhole principle

i i i holes
i igeons are randomly put into m pigeonholg
Smtf:s tnhi?cgingrogbability 1/m, then at least one pigeonhole
jith u . : s
\‘:ill hold more than one pigeon w'ﬂl probability

@ [ omy’ =L“_']
‘l—(m—n)!m“ m" " m-n+l

where (m), is falling factorial, forn=0 fiﬂd for n= 1 (and
“ m> 0), that probability is zero; in other words, if therf: is just one
il there cannot be conflict. For n> m (more pigeons than
fgzor?}’m]es) it is one, in which case it coincides with the ordinary
P;gegnhole principle. Buteven if the number of pigeons does not
zxceed the number of pigeonholes(n <m), due to the r'andom
nature of the assignment of pigeons to pigeonholes there is o .ch
a substantial chance that clashes wil l_occur‘ For example, :f02
pigeons are randomly assigned to 4 pigeonholes, there isa25%
chance that at least one pigeonhole will hold .n.aorg than one
igeon; for 5 pigeons and 10 holes, that probability is 69.76%,;
and for 10 pigeons and 20 holes it is about 93.45%. This problem
is treated at much greater length at birthday paradox.
Pigeonhole Principle : Simple Form

m!

=1-

Theorem : If n + I objects are put into n boxes, then at least
one box contains two or more objects,

Proof : Suppose none of the # boxes contains more than one
object. Then the total number of objects would be at most n.
This is a contradiction, since there are at leastn + 1 objects.
Example : There are » married couples. How many of the

2n people must be selected in order to guarantee that one
has selected a married couple?

o_ve by mathematical induction that 3" > v’ for
“0ll integers y > 4 [R.T.U. 2017}
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decreases as k increases, so that f(k) is largest when k is
smallest. In other words, f(4) is the largest value of f(k),
where k 2 4.

Since
3 3 1
=+t —
f(4) 4 42 43
_ 125 ..
64

is obviously less then 3. We have, for any integer k > 4,
3> (1 + -3— +—3— + L)
k k¥ K
Thus combining the two facts :
3 3 1
3> |+E+'k—2+F and 3> K? fork = 4, we can

multiply and get

3k >k3(| +1+—3—,+-}—
k k¥ K
or 3> (k+1)
So P(k+1) is true and then by mathematical induction

P(n) is true for all integers n > 4, i.e. 3" > n’.

rove by mathematical induction that 6"* + 7"*
Is divisible by 43 for each positive integer n.

[R.T.U. 2016}

OR
Define principle of mathematical induction and
hence prove that ¢(v+2)  4(2n+1) is divisible by 43

for each positive integer n. [R.T.U. 2008]

Ans. Principle of Mathematical Induction : Let p(n) be
some statement involving a positive integer n. Suppose it is
required to show that p(n) is true for integer n greater than
some fixed integer n,. The method adopted here to prove is
called the method of mathematical induction. This method
consists of the following three steps :

Basis Step : First it is verified whether p(n) is true for
certain number. Generally we take n,to have the valuerone.
If p (n) is not true for n = 1 then the least value of n found for
which it is true.

Hypothesis : Then it is assumed that p (n) is true forn =k.

Inductive Step : Taking p(n) to be true forn =k, it is
proved that p(n) is true also for the next value n = (k+1).

Since it has been found to be true for n=ny, so it is true
for n=n,+1. When it is true for n=n, + 1, it is true for the
next valuen=ng+1+1.

Arranging in this way, it is concluded that p(n) is true
for all positive integer values of n 2 ng. The above method of

{(Discrete Mathematics Structure )
proving a proposition p(n) involving a positive integer n is
called the Method of Mathematical Induction or the
Principle of Mathematical Induction.
Proof
Let p(n):43 divides 6"*2 +72*!
Basis Step : Let n = |, then p(1) is true
= 6!+2 +-,2+I =63 +73 =216 +343
=559, which is divisible by 43.
Inductive Hypothesis : Let p(k) be true for k=1.
6%+2 ;. 72k+1 is divisible by 43 (say 43.).
Inductive Step : We shall show that

p(k+1): 6*? + 7253 is divisible by 43, is true whenever

p(k) is true.
6k*3 +-’.2ka - 6k#2. 6! +72k‘1'72
=6"*2 6+7%%*(43+6)
=43, 72k4l +6(6k¢2 +72k+l)
=43.7% + 6430 =43 (7™ +620)  °
= 6°3 + 7273 is divisible by 43.
Now
= p (k + 1) is true.

Hence by principle of mathematical induction 43 divides

g(n*2) 4 7(2n+1)

et
————

Q.45(a) Prove that A~-B=A N"B’=B’ N A’
(b) Consider the following collection of subsels
{A, Ay A} of aset A= {12,34,56,7,8,9,10}
la] [{1,6,9}, {2,3,8}, {4,5,7,10}]
18] {1}, {2,4,8}, {5,7,9}] and
fe] [{1,5}, {2,3,8}, {4,5,6,7,9,10}]
Determine which one is a partition of a set A
(c) Let f, g, h be mapping from N to N when N is
the set of naturals such that f(n) = n + 1,
0, nis even

. gm)=2n, h(n) = {j,nisodd

() Show that f, g and h are functions

(i) Determine fof, fog, hog and (fog) oh

Where ‘o’ stands for composition of functions
[RTU 2016

—_—————— == ————————1

Ans.(a) Prove
Letx €

Thus A
Again

thus A
from (1
R
Ans.(b)A={1,
A famil
(i) A NA,
(i) Their us
A

(a]

n

There,

'

Now, A,
LALA
[c]

Now, A

cars
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m

ParT-A

( 0. 12 Define finite state machines. [R.TU. 2019]

Ans. Finite automation as a machine equipped with an input
tape. The machine works on a discrete time scale. At every
point of time the machine is in one of'its states, then it reads
the next letter on the tape (the letter under the reading head),
or maybe nothing (in the first variation), and then, according
to the transition function (depending on the actual state and
the letter being read, if any) it goes to a/the next state. It may
happen in some variation that there is no transitions defined
for the actual state and letter, then the machine gets stuck
and cannot continue its run.

T —————————
Q.2 In how many ways can a team of 11 cricketers be
chosen for 6 bowlers, 4 wicket keepers and 11
batsmen to give majority of batsmen so that at least
4 bowlers are there and | wicketkeeper?[R.T.U. 2019/

Ans. 1 wicketkeeper can be selected in C(4, 1) ways
4 bowlers chosen = C(6, 4)
Remaining 6 batsmen = C(11. 6)
Total possibilities = C(4, 1) * C(6, 4) * C(11, 6) = 27720
The batsmen has to be majority. So the split cannot be

1 WC, 5 Bowlers, 5 Batsmen. [t can only be 1IWC, 4 bowlers
and 6 batsmen.

e ———————————————

Q.3 Show that (p/\ q)— (pv q) is a tautology. -
[RTU. 2017]

Ans. (pAg)—> (pvq)
First, we construct the truth table

Pl a9 |paq| pvg | pal
T T | T Uy
T|F| F i
F| T| F i
FIF| F F

Since in the last column, all are tri
PAY4-—»pV( is atautology.

Q.4 Find PCNF of a statement Sw
pPprgAar)vpaga~r) v

e e e ety

Ans. First we obtain PDNF of ~s,
(disjunction) of those minterms which :
gwen PDNF of s. Hence the PDNF of

~PA~gqA~n)v(~PA~qAr)

Thus, the PCNF of S = [PDNF «
=~((~PAa~gqAa~n)v(~-PA~q

VIPA~qAa~m
=(Pvqvna(pvqgv~rna(~

Q.5 Explain the following for propos
(i) Logical Equivalence
(ii) Tautological Implication

(iii) Normal Forms

M

‘Ans.(i) Logical Equivalence : Any
‘wihich the truth table is same are sai
EQUIVALENT.

v n 2 X . nwva



(BMS22)}— .

q p—q ~q (=pvyq)

F T T F N
F T T T T
F F T F F
T T T F T

(ii) Tautological Implication : Compound statements

"~ which are alwa , :
“I:npoﬂe"t statements are called tautologies. Obviously, the
co

th table of a tautology will contain only T entries in the last
il

column. N |
Example : The statement (p = q) > (~q =~ p) is

atautology

vs true regardless of-the truth or false of

~{(B.Tech. (IV Sem.) C.5, Bolved Pupers )

Ans. Given
p : It is hot today
q : The temperature is 35°C
)pvy
Either it is hot today or the temperature is 35° C
(i) 4p v q)
Neither itis hot today nor the temperature is 35° C
(i) ~(p A q)
Itis not hot today and the temperature is not 35% C
(iv) ~p v ~q
Itis not hot today and the temperature is not 35% C

DOENEIERES A VEY ISRy
i — T

iT"T T gy T

%T!F F | T F F T

Flr| T JF T T '
lelel 7 Irlr] 7 T

(iii) Normal Forms : A literal L is either on after P or
its negation (—P). A clause D is a disjunction literals. A
formula C is in NORMAL FORM if it is a conjunction of
clause.
L->P-P
D->LLvD
C-DDaC
Example: (a) (—qvpvra(-pvriag
@pPvoa(=pvr)a(pv—r)
e ——————————————r e e
Q.6 Over the universe of animals, let
Px) : x is a whale ; Q(x) : x is a fish
R(x) : x lives in water.
Translate the following into E. nglish
Ix(~R (x))
Ix(Q(x) A~ P (x))
Yx(P(x) AR (x)) = Q (x)

I'Lm. ‘3 X(~R(x)) : There exists zn animal which does not
lives in water,

3x(Qx) A ~ P(x)) : There exists a fish that is not a
whale,

[R.TU. 2014]

Ix(P(x) AR

the vater,is 3 i, (X)) > Q(x) : Every whale that lives in

Consic.ier the Jollowing :
Piltis hoy today

q -‘_Z'lfe lemperature is 35°C
" Simple sentence the meaning of the following :

() pvq (ii) ~
() ~ pr-g (Pvq) (iii) ~(prg)

ParT-B

w
Q.8 (a) Show that ~(pv (~p A q)) =(~p) A(~q) (without
- truth table)

(b) Write contrapositive converse and inverse of
the statement “The home team wins whenever
it is raining”. Also construct the truth table for
each statement. [RTU. 2019)

T ————
Ans.(a) ~(pv (~p A q)) = ~p r ~(~p Q)
[De Morgan’s Law]|

=~p A (~p v ~q) [De Morgan’s Law]
=~pA(pv~q) [Double Negation Law)
=(~pAp) Vv (~pA-~q) [Distributive Law]
=Fv(-pr~q) [.~prp=F]
=~p A~p

Ans.(b) The given proposition is in the form “q whenever p”
such that,

q (Conclusion) : The home team wins.

p (hypothesis) : It is raining.

Converse : q — p is “If the home team wins then it is
raining”,

Inverse : —p — —q is “If it is not raining then the home
team does not win”.
Contra positive: —~q —» —p is “If the home team does
not win then it is not raining”.

p q P29 | 92>p |(~p>~q ~q—>~
T -1 T T T T
T F F T T F
F T T F F  §
F F T T T T

— [R.T.U. 2013}

Q.10
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re is 35°C

ay or the temperature is 35°C
day nor the temperature is 35° C
and the temperature is not 35° C

ind the temperature is not 35° C
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%
(¥ (~P 7 9)) =(~p) A (~q) (without

apositive converse and inverse of
1t “The home team wins whenever
“ Also construct the truth table for
ent. [R.T.U. 2019]

e ————
=~p ~ ~(~p ~ ~q)

[De Morgan’s Law]

[De Morgan’s Law]

[Double Negation Law]

-q) [Distributive Law]
[.~prp=F]

ition is in the form “q whenever p”

home team wins.
aining.
“If the home team wins then it is

s “If it is not raining then the home

— —p is “If the home team does

»”

g”.
9=>p [~p—>~q[~q>~p]

(Discrete Mathematics Structure }

Draw the transition diagram of the finite state
machine M (I, S, O, Sy, f, g), where I = {a, b},
S = {8, S;}, O = {0, 1} and the transition table is as

Jollows-
f g
a b a b
S
So Sy So 0 1
Sy So S 1 0

Also, find the output string for the input b b a a.
[R.T.U. 2019]

m 4

Ans. FSM, M (1, S, 0, Sy, f, g)

I= {a, b}

S={S; S;}

O0={0, 1}

Aol

z—>0

1. A finite set | of alphabet
A finite set S of internal state
A finite state Z of O/P symbol
An initial state S in S

A next state function f from S % [ into S.

o swo

An op state functions of from S x [ into Z.
Transition of function f(f: S x I = P(S))
Sy - initial state

F - finite state

0/0 . 1/1
L& ee

Transitional diagram (Result)
Output string for bbaa is 1101. ‘

Q.10 In a test 70% of the candidate passed in Science,
65% in Mathematics, 27% failed in both Science

Ans. 70% passed in scie
27% failed in both.

100-27=73%

n(S) = 70%. n(M) =
n(SUM) =n(S) + ni
=70+ 65-73 =62
62 passed in both sul
124 passed in both ¢

100
%124 =200.
= 200

Q.11 Obtain the Princ
prg vip

Ans.

Plq|r| prg=a
T{T|T T
T|T|F T
T|F|T F
T{FIF F
FIT|T r
F|ITIF F
FIFI|T F
FIF|F F

PDNF of (pag) »
=((prg)A(rv-

=(prgnrn)v(
V(~paAl

=(paqarn) v

(Deletion of iden

.
Q.12 (a) Define Tautc
Determine t

(i) If John .

(ii) Only if |

(b) Determine

All men ar

All kings a
Therefore,

and Mathematics and 124 passed in both the

[ e
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Q ow that propositional formula
' p /\q) A(f/\S) = P for any propositions p,q,r,s is
a tautology. [R.T.U. 2013, 07]
_____________—--—__-_""—_—-——_ - . —
Ans. Given (p~g) ~(rsrs) =P
[ [ ' ~;-Jp/qy , (prq)s
w—— p q r S (IJ/‘Q) (rrs .S) ii. (r‘/. S) I: (r,a.s)-)p |
ndnojrt [T |T T[] T [ T | T i3 T
201 (T |T|F| T | F | F 1 T |
= T | T F| T | T ’ F‘___;__- f__ _____r______‘f
eptors{ 1+ [ F | T | T F 1_ T | F ___I___i
mite g 17| T|T] F T | F | J J
T[T |F|F| T A T 1 f
fy T TFI1F|T| F F | F | |
. f : - ; > ' T {
FI|F|T|F| F I - —
'Ol . F‘ F 'l' |
— FIT| T|F|] F ——
T . T i T
T|F|T|T| F . 4 —
s - F F | 1 |
ultiple|flF [T F | F | F i S— s
gat ‘T F|F|F|] F | F | 7 e
I FTFIF|[T| F F | F I
NFA | e 3 F r
' ! F F | 6§ [ F | F .f_. - -
we | : i P .- F — [ F 8 T __;
we [E[TIFIEL F L
__qJF|F|F[F] F | = —
— . s always trué )
S c(paq)r(ras)—>p 15 .1 ,ro  pitioiial el B
o Hence proved that the given propost
S tautology. -
ETE————— )
/’b . s tho validity of the

(pv~

Thus, i
Computer is
then by four
not studied t
leads to stud
TEe———
Q.22 (a) S¥

p
(b) SI

Ans. (a)
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Hasse DIAGRAM
AND LATTICES

ParT-A

Q@.1 Prave that ? is an even integer, then a is an even

integer. . [R.T.U. 2019/
=======ﬂ—"—————'—=ﬂ=
Ans. Let a & is an cven integer

a? = 2k, for some integer k

a=
ed

' o k
So there is an integer J = —, such that . = 2J o is an
o :
even.

ﬂ__-—-__
0.2 Give an example of a partially ordered set which
is not a lattice. IR.T.U. 2019/

W
Ans. A partially ordercd set (X, <) is called a lattice if for
every pair of elements x. y € X both the infimum and
suprememum of the set {x, y} cxists. [ am trying to get an
intuition for how a partially ordered set can fail to be a lattice.
In R, for example, once two elements are selected the
completeness of the real nunbers guarantees the existence
of both the infimum and supremum: Now, if we restrict our
attention to a nondegenerate interval (a, b) it is clear that no
two points in (a, b) have ¢ither a suprememum or ifimum in

(a, b).
@me a Hasse Diagram for (A), (divisibility

relation), where

() A=1{1234,56738}

(i) A= {1,23,5,11,13};
(iii) A = {2,3,4,5,6,30,60};
(iv) §={1,2,3,6,12,24,};

i

Ans.

(i) A= {1,2,3:4,5,6,7,8} (i) A=1{1,2.3,5,11,13)

8

3 S 1

XS]

t2
o

!“\07

60 24

(i) A =12,3,4,5,6,30,60}  (iv) S = {1,2,3,6,12,24,}

Q.4 Solve the following:

of the letters A,B,C,D,E and F.
different bus routes are possible?

the questions have
respectively, find the total number

(a) In a city, the bus route nunibers consists of
natural number less than 100, followed by of

(h) There are 3 question in a question paper
4,3 and 2 solutiol

How ma#

of solutio

Ans.(a) The number can be any
from I to 99.

me of the natural num

,_.,




DMS34

There are 99 choices for the number.

The letter can be chooses in 6 wavs

Number of possible bus routes are : 99 x 6 = 504
| has 4 solutions. question 2 has 3

olutions

Towm! numbser of solutiond ¥ x I x 1= 14

Qs Find the gemerating functions for the Sfollowing
SequUEnces:
(g 1,1.1,1.1.1,0.0.0.4....

@ 1.3.3.1.0.0.6.4....

AT S o

e sumora

geometric

ParT-B !

’Qlé }“’ Solve the recurrence relations-

a4, -358,,%6a, .=3m - 2 + ]
) Prove by induction that sum of the cubes of
three consecutive integers is divisible by 9.
[RT.U. 2019f
Ans.(a)z

~58,,+6a,,=3n<2n+|
Particular solution of the above is if
’%=Pgnj"P:ﬁ"' P,

the form

P;ﬂ:v + . y
5P (092 Pa+p, - Pyn =~ 17~ SPy(n - 1) - 5P+
D-P:J“6P3(n—2)»6p3=3n;_2!] ‘-] 3
W +Pn+p. _g 2 -
6P,(n? M* P~ 5P (07 - 20 + 1)=5Pyn + 5P, - 5P+

__h]_‘__:}

\

*oh I2P;+ 6Py =3n" - 2n + |

——{(B.Tech. IV Sem.) C.5. Solved Papers )

= P+ Pm * Py~ 5P\n® - 10Pn - SP, - 5P, + 5P,
=3Pyt 6Pin’ - 24Pin 4 24P, + 6Pyn - 12P,+ 6P,
=307 -2+

I

M(Py = 5Py + 6P)) + n(P, + 10P, - 5P, - 24P, + 6P})
+ (P~ 5P, + 5P, - 5Py + 24P, - 12P, + 6P)

= .';I'I: -2n+

Equating coefficients of n?

. nand constant term, we get
Py - 3P, + 6P, =3

P, +P,=3
2P, =3
3
P,==
2

P, + 10P, - 5P, - 24P, + 6P, = 2

Py— 5P, + 5P, - 5P, + 24P, - 24P, + 6Py =1
19P, + 2P;- 7P, = |
19

+2P-Tx— =
3 "2 1

19x

K| L

':Q\B—.-IP_.‘-—TN|9=2
dPy=2+7x19-19x3

Py= —

4
+

78

so the particular solution is

aP= %l1z+¥s1+§
Ans. (b) P(m)=m’ + (m+ 1)+ (m+ 2)} is divide by 9.
P(n)=r113-+(m+I)’+(m+2)3=ak
P =1+ +1)P+(1 +2)
=1 +8+27=36=0x4
aX#* — P(1) is true
Let P(m) be true
P(m) :m?+(m+ 1) +(m+2) =ax
GPm+1):(m+1) +(m+2)7+ (m+3)’ =ak

( Discrete Mathematics suuchl-rew,

+9m’#27m +27 . ! .
o mi4(m+ 1) +(m+2) +9m’+27m +27=ak +am

F27m + 27

(m+ 1y +(m+2)+(m+3)=(m+ 1P +(m+2)y +m’

= a(}k+m2+3m +3)=9k

P(1)

=_—..——"-"P(m % 1) is true.

ﬁ

Q.7 If the coefficient of (2r+4)™ and (r-2)™ terms in the
expansion of (1+p"? are equal, then find the value

of r.

Ans. The general term of (1 +x)"is T, Cx'
Hence coefficient of (2r+4)™ term will be
Tarvs = Tara3e1= ""Carna
and coefficient or (r-2)" term will be
T2 =T = by o
"¥Cy3 ="*C,3
Q2r+PN+(-3)=18

(. "C,="Cy=r=korr+k=

2l

2|l

—_— e, - 0

n)

r=6
e ——— e —————————

Q.8 Inalattice defined by the following Hasse Diagram,
how many complements does the element ‘e’ have?

a

f
Flg.

Ans. The element e has 3 components — g,c and d.
evg=a and eng="{
evc=aand eac="f

evd=aand ead="f
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- .6 Write short note on Galois field, Example:
{ ol s TR?;;: Integer and modular addition
‘ The set of integers Z,with the operation of addition, forms

Ans. Galois Field: A finite field is a field with 4 finite g §agroup‘ Itisan infinite cyclic group, because all integers can
order (i.e., number of elements). also called a Galois ; 'l " ritten by repeatedly adding or subtracting the single

g o =B eldF, his group, 1 and “1 afe the onl
- | example, GF(p} is called the prime field of order p, and i, umber 1 !n this group. 1 ar : ¥ generators,
g3 field of residue classes modulo p, where the P i:lemems a “Every infinite Cyd_"f gr(.)uP ' lsomorph‘,c l? Z
dencted 0. 1, .., p ~ 1. @ = b in GF(p) means the same FopGiey posIe 1 CSREE T 18 Setor Inteers modke
AR e e o
12 - e ted Z/nZ. rofthis grou
.i . The xaie ﬁild Ggéz_t)_cm;:;‘-:'nt::];lelr‘neiz‘is Oand | \\fhichj:'imis relatively prime to n, b‘ecausc these elementi caE
- satisfy the following addition plication tables, senerate all other elements of the group through integer
the +~{ol1 \ddition. (The numbgr of such generators is o(n). where o is
he Euler totient function.) Every finite cyclic group G is
e ojoft somUl'Phif-‘c: Z/nZ. where n = |Gj is the order of the group.
fian tf1lo The addition oper:.\.lions on integers and modular integers,
led ~lol1 sed to define rhe: cyclic groups. are the addition operations
lled .f commutative rings, also denoted Z and Z/nZ or Z/(n). It p
iiar {0} o0 s aprime, then Z pZisa finite field, and is usvally denoted F,
e a 1jof1 ' GF(p).
The (i) Order of a group : In group theory, a branch of
le : —hathematics, the order of & group is its cardinality, that is, the
:?af Q.7 Explain Subgroup. umber of elements in its set. The order ot an element a of a
:‘l :: Ans. Let G be a group and 4 < G be non-empty. If H is als oue somili-me.\i also pcri.od‘ Ieng:l.w or peried of a, is the
V' any i N - ; mallest positive integer m such that a® = ¢, where ¢ denotes
a group under the same operation as G then His a sub gmuw identity element of the group, and a™ denotes the product
of ail | of Gif{e}CHC G then H is proper subgroup of G fmcopies of a. I no such mexists, ais said 1o have infinite
rder.
The order of'a group G is denoted by ord{G or (G and
BN ParT-B fie onder of an clement a is denoted by ord(a) or [a. The
'rder ofan element a is equal to the onder of its eyelic subaroup
- > = fat frr L - . e vanarate
”‘3::“ @Dtﬁnc and explain the following by snimb‘:\us. _a:,:n\);:\‘l.\ s fhe sbgroup genened by ¢
exampies-

. - Lagrange’s theorem states that for am subgroup H of
6 Cyclic group - =

(i} Order of an element in a group
{iig} Field

(iv} Zero divisor of a ring

nt 0, L the order of the subgroup divides the order of the group:
Id: d sadivisor of |G). In particular, the order of any element
Jr.r. 20 4 4Visa of G
—  Example, The
Ans.(i) Cyelic Group : In group theory, a branch of absteultiplication apje
algebra, a cyelic group or monogenous group isa group T T

symmetric group S, has the following

B.Tech. (IV Sem) C.5, 55
Thisrom

the order of the iden:i‘t;]e:n?msvsoo'rdw]):ﬁ' i,
o lh,es.elzrc:)r;e,:lmcc e' =e Each of's, ¢,
I_SI =t =|w|=12, Finally, u and viav::n::gz 25"? O'de: e
e, and vi=yy =g .
(iii) Field : Refer 10 0.4,
Example ; -
Rational Numbers ;: Ry
used a long time before the
€Y are numbers that
Where a and b are integers, and b =
of such a fraction is

(provided that a =

=vu

1onal numbers have been widely
elaboration of the concept of
can be written as fractions a/b,
0. The additive inverse
-a/b, and the multiplicative inverse
0) i b/a. which can be seen as follows :

The abstractly required field axioms reduce to
standard properties of rational nun
law of distributivity ¢

L‘-;/C e]

wbers. For example, the
an be proven as follows -

bld Tt

afef ed)
“hldTT
_afel ed) g oof sed

bldf @) " b ar
afet +ed) et Jded ac ae

bdf  bdf bdf  bd bf
ac ac
bd bt
(iv) Zero Divisors in Rings
Definition @ Let (R,+, *) be a ring where 0 € R is the
wentity of +. The element a &€ R0} is said to be a Zero-
Divisor of R if there exists a b € R\0! suchthata*b=0o0r
b*a=0.
For example, consider the ring (M, +, *) of 2 x 2
matrices with real coeflicients and with the operations of
standard matrix additiion +, and standard matrix multiplication

2

*_ Recall that the identity of + is the 2 v 2 zero matrix

Further consider the matrives A, B e M., given by

Lo 0 1
(1)
A tu al+B ‘u I| (

When we multiply the matrices A and B together we

have that

Y i generated by a single element. That is. it is a set of invertif ;“‘?‘3-4—- S N Yol
elements with a single associative binary operation, ané’ 5 [ g st Yol ML
contains an element g such that every other element of S i > 4w ot fu
group may be obtained by repeatedly applying the S“’i u TT‘:‘ o ! 2 I = | *
operation (0 g or its inverse. Each element can be writtel v T=—p— W j N s T !
a power of g in multiplicative notation, or as a multiple of f Q -——:__J. — l : l u |
additive notation, This element g is called a generator of S S LW . -

group. 4

} s
; 1jfe 17 fo o‘l —
A*B=lg ojlo -1]=|0 o|=® D1 QY

S e e element
Notice that A is not the identity for + and B is not the fa, &
identity for +. Therefore, the matrices A and B are zero divisors Iudz |

of M. " 2
‘We should bee clear that a ring (R, <, *) need not have

any zero divisors. For example, consider the ring (C, +, *)of | Prove ¢

complex numbers where + is standard addition and * is | an elen

standard mukiplication. We note that the identity of +is 0 =0 | the feas

+0i € C. Since (C, +, *) is a commutative ring,then for X, y | s

€ C\{0} and wherex=a+biandy=c+difora,b,c,de R Ans. G

we need to consider the following equation. .
x*y=(a+bi)c+di)=(ac-bd)+ (ad + bc)i =0 + 0i :

(3 :
Note that this equality holds if and only if :
ac =bd and ad + be = 0 ) !
"Without loss of generality; assume x = 0. Then cither ;‘f“':‘m
a=0orb =0 or both. Assume a = 0. Then we can divide | 454N
both equations by a to get |
b group
bd C »
c=—(*) and d+— =0(**) .(3) |
a a
Substituting the first equation into the second yields:
d+CE =0(") ...(6)
a
bd b
d+—.— =0
a a
d+— =0(")
y N
b
i+ = l =0
N A ‘
There are two possibilities in the equation above. Either |4 5
2 h' . . di N —
d=0or 1+ =0 Clearly 1+ g =0 since this would impl Q.
a 8
and
) = equ
that Lél = 1. Therefore d = 0.
a H
be o
Looking at (**) we see that then pry =0 soeitherb =0
3 - o> 4] i
ore =0, Ifc =0 we have that then y = < +di=0. Meanwhile, |
if'c = 0 then b =0 and by (*) this implies that o= 030 thu? ¥ A
= ¢ + di = 0 again. In either case, we see that if \ =a+hi=
0+ Oitheny = +di=0+0i. Therefore, there axists po zere
divisars in the ring (& +. %)
5
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{H.Tec.h. (IV Sem.) C.S. Solved Papers )
LHS=(a. D) O (c +e,d+ D '

- (ac + ae - bd ~bf, be + be + ad + af)

RHS = ((a.b) O (¢, d)) ® ((a, b) O (e, D)

= (ac — bd, be + ad) @ (ae - bf, be + af)

= (ac - bd + ae - bf, be + ad + be + af)

LHS = RHS

Hence Proved

The necessary and sufficient condition for a non-
edbry subset H of a group {G *} to be a subgroup is a,

be H >a*b'e H. [R.T.U. 2016/

b - _ — _ ___ ___ __ _ ___ __ _ — ]
Ans. The condition is necessary. Suppose H is a subgroup of

Gandleta € H, b € H. Now each element of H must posses
inverse because H itself is a group.

beH=b'eH
Also. H is closed under composition * in G. Therefore,
acHb'eH=>a*b'eH

The condition is sufficient. If itis givena € H,b™' ¢ H
—a*b ' € H, then we have to prove that H is a subgroup.
(i) Closure property : Leta,be Hthenbe H=b" e H.
Therefore,.ac H,b' e H=>a* (b)) e H.
—a*beH.
H is closed with respect to composition * in G.
{ii) Associative property : Since elements of H are also
the elements of (&, the composition is associative in H.
{11) Existence of identity : Since,
acHa'ecH=>a*a'e] =eeH
(iv) Existence of inverse : Let a € H then
ceHaeH=e*a'eH>a'eH
Hence, H ntself 1s a group for the composition * in
group G. '
]

Q.12 Show that 7= {0,1,2,3,4} is an abelian group Sfor
the . neration +; defined as.

5
a+,b=[”+b if a+b<

L T.U. 2015
ssb-§ Farhpy =~ BREAE
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= ceH
Thus the identity ¢ is an element of H,
Existence of im'c.rsc: Let a be any elemep; of
Then by the given condition we have |
ceH. aeH = ca'eH @ a’'eH
Thus each element of H possess inverse.
Closure property : Let a, beH
beH = b'eH
Theretore applying the given condition, we have
acH. b'eH = a(b™')"' eH = abeH

Associativity : The elements of H are also

it must also be associative in H.
Hence H itself is a group for the composition in
Therefore H is a subgroup of G

Part-C k|

elements of G The composition in G is associative, Therefop!!

7
Ans.(c) Leta, b e G Herea # =
|

DMS,“ 00;: Let the no of vertex in a graph is denoted by

Ans(D)P | then A(G) = 0, K(G) = 1. So the results holds.

o H‘ll:‘rl};c an integer: and k = 1. Assume that results hold
Now le 2
:\?‘all graph with [V] = k vertex.

LetGbea graph with (k + 1)_\';‘_3”‘-"‘
Let V be any vertex of G and Gﬂ g G{\} =

is a subgraph o
G, has k vertex SO we use induction

fG oblninc(f by deleting V from G.

Since
K(Gg) < 1 + A(Go)

.ﬂ(GQ) s ‘\{GU)

K(Gy) < | + A(G)

So Gy can be colored with atmost 1 + A(G) colors. Since

here can be almost A(G) vertices adjacent to V, one of the
1 + A(G) colors remains for V. Thus G can be colored

vailable
vith atmost 1 + A(G) colors.

ﬂ.‘v’a,bEG
2

’
(i) Closure : aand barenon zero real numbers ab is

1lso a non zero real number

Q.14 (a}Let (m, *) be a semi group and a € m such tha
the equations a * u = x and v * a = x hav
solutions in M for all x € M. Show that M, i
« monoid.

(b} Let A(G) be the maximunt of the degrees of th
vertices of a graph G then K(G) s 1 + A(G
vhere K(G) is the chromatic number of grap
@cr G be the set of all non-zerv real numbe

ab
and Leta * b = 5 then show that (G, *) is 6

ab |
£l is also a non zero real number

-?EeG:»(a’b)EG

abelian group.

Ans.(a) Givena*u=x
andv*a=x; YxeA (1
a &€ A if we fake x = a equation (i) are satisfied.
For some u = e, and v = en
a*be=aande, *a=a
AgainLety ¢ A
y“c,=(v‘a)‘e,=v*(a*e,)=v‘a=y
m*Y=er*@*u)=(¢*a)*u
=a‘tu=y
y"e,=_vandcm *y=y
¢;and ¢, are right and left identity in A
eg=e =g
identity element e € A.

JR.T.U. 201

|

2
Gisclosed
(i) Associativity : Letca,b.ce G -
Then
be a(be) ab
a'(bsc)=a‘[?)= g:)_¥ i)
_[ab a(be) abe
(a‘b"“[z]“ TRy (3

From (1) and (2)

a‘(b‘c)=(atb)sc

G isassociative

(iii) Identity : Let ¢ be the identity element is.G.
IVE=4 ol

ae

2 abe:'—JEG

ausi
<181dentity element is G,

e ——

{ B.Tech. (IV Sem.) C.S. Solved Papers )

a*a =2
n%=2::n‘=%cG(a::0]

(v} Abelian: Leta, b e G then

a*b=b*a Va,beG
Therefore (G *) is an abelan.

(iv) Inverse : Leta' b ¢ the inverse of a € G

a € G, So each elements of G has its inverse in G

only two generators.

ideal of the ring R = {[: z]u.b.c € z].

operations of the system.

Q.15 (a) Prove that every infinite cyclic group has two and

0
(b) Show that the ser t{g) = {[: a]n ebe z} isan

Matrix addition and matrix multiplication being the

JRT.U. 2014

equal.
For, if possible, leta'=a*, r>s
= a .a*=a""*
= a=a’
= am=0
Since r—s is posilive integer
at =] = a®=r-s finite

Hence a" # a* unless r = §
Therefor we can write

G={.a%a%a% " a"2' 2.}

(@™k=aie a™=a

Nowm=1lor-l bmk=z|

cannot be a generator of G if m # | or
two generalors.

Ans.(a) Let G = {a} be an infinite cyclic group generated by a.
The elements of G will be integral power of a.
We claim that no two distinct integral power of a can be

So ‘a’ can’t be a generator of an infinite cyclic group G

If a is any elment of G we can write a' = (a”')”

Thus a' is also a generator of G. To show that a and a™
generator Now if m = | or ~1 then a” can’t be generator of G
Ifa is to a generator of G, there must exist an integer k such that

Therefore two distinct integral powersof *a’ arc equal and
this contracts that statement we have just proved. Hence a®

1. Thus G has exactly




ParT-A

’ OR
Define the isomorpliic graph with example.
’ [R.T.U. 2014/

Ans. Isomorphic Graphs : Two graphs G, = (V , E)) and

G.=(V..E.} are said to be [somorphic to each other if there

exists 2 bijection mapping f from V,to V..

ie.f:V - V._such that for each of the vertices il L,
fv.v} e E = {fiv), f{v)} € E, '

The function fis called anjlsomorphism from G, to G..
~ Itis immediately apparent by the definition of
isomorphism that two isomorphic graphs must have

(2) The same number of vertices

(b) The same number of edges

(¢) An 2qual number of ve

rtices with a given degree
€., same degree sequence.

-
riowever, these conditi

oy ons are by no means sufficient.
nee, the two graphs

Fori

S (given 'below) satisfy all
cond ’ clow) satisfy all three
ions, yet they are not isomorphic,
u [“'
‘\\\< — s -
o
(a) . i

(b)

Fip. .
Thfgfaphg‘ Two graphs that are not isomorphic
Sinfio (., .
fll]\own oliows f‘ltf'g- (a)and (b) are not isomorphic can be
COMEin (b) vers the graph (a) werc 1o be isomorphic to

» Vertey
X Must correspond 1o ¥, because there

Write short note on isomorphism of graphs.
[R.T.U. 2019/

are no other vertices of degree three. Now in (b) there is
only one pendant vertex, w, adjacent to y. While in (a) there
are two pendant vertices, u and v, adjacent to x. Thus the
adjacency relationship is not preserved. Hence (a) and (b)
are not isomorphic.

@?? ) Write short note on planar graphs. [R.TU. 201 9;!
OR :

Define the planar graph with example.
) [R.T.U. 2014}
. .
Ans. Planar Graphs : A graph is called planar if it can be
drawn in a plane such that no two edges intersect except at
their common end vertices, if any.

Note that, if a graph G has been drawn with crossing
edges, it does not mean that G is non—planar. There may be
other planar representation of G. For example, following are
planar graphs.

a b a b
—_—
d c d ¢
(a)
> f
c g
b c
a 4 s
£ £
a d
h c
h e
(b)
Fig.

Q.3 Define the

Ans; Weighted C
associated with
weights to be no
also known as e

“Examplé: T
right -

p————
Q.4 Write sh
Graphs.

e

Ans. Eulerian
passes through
at the first ver
Euler line in (
called an Eul

Vi ¢

Hamilt
which hasac]
once though |

R

Q.5 Write

eE——
Ans.Cut S
edges with |



a

Fig.-
The above Ge
single ve

annot be disconnected by
(such as

removing a
Aex, but the remova) of two non-adjacent vertices
b and ¢) disconnects it The G has cor

nectivity 2,
Q.7 Prove that the chromatic number
more than one,
Sin a graph,

[R-T.U. 2017, 2011
.___-__—____'_
Ams. Proof -

Let A(G) be the maxin
the vertices of 5 graph G.
Let the number of vertices in g gra
VI 1E (V) = 1. then A(G) = 0 and K(G)
holds. Now jet K be an i

not exceed by

of a graph will
of the vertice

the maximum degree

wm of the degrees of

ph is denoted by

=1, so the result
nteger and K > |, Assume that the
result holds for al| graph with |V| = K vertices,
LetGbe a graph with (K + 1) vertices. |
veriex of G and et G,

=G/{v} isa subgraph of
by deleting v from G,

Since Gy has K v
hypothesis to conclude

£l v be any
"G obtained

ertices 50 we can use the induction
that

K(Gp <1+ A(Gy)
Also, A(Gg) = A(G)

K(Gy <1+ A(G)

So Gy can be colored with at most 1+ A(G) colors,
Since there can be atmost AG) ventices adjacentto v, one of
the available |

+ A(G) colors remains for v, Thus G can be
colored with atmost | + A(G) colors.

RY

Hence proved.

- —
Show the total number of odd degree vertices of a(p, g,
graph (graph with p vertices and q edges) is even.

[R.T.U. 2012/
OK

Prove that the number of vertices of odd degrees in
an undirected graph is always even.

OR

Prove that the number of vdd degre
graph G is always even.

[RT.U. 2016)

¢ vertices in
[R.TU. 2011, 2019; Raj. Univ. 2007, 2006, 2005]

.

Ans. Let G (V, E) be a graph. V, ¢ V and V, ©V be the set
of vertices of even degree and odd degree respectively. The
Vew.V,. Also let n be the number of edges.

s

~{ B.Tech. (IV Sem.) C.5, Solved Papers

%dcg(v)-— 2 deg(v)+ Y deg(v) = 2n

. |/
vel,

vel,

Since deg(v) is even for v . V, 2 deg(

v) =m(say) is
vF_VL.
also even,

= zdcg(")=2n—m=2n—-2k

vel,

(m =2k for some integer k)
=2(n~k)=2I(l=n-kis an integer)
= an even number

Since all the terms in the sum > deg(v) are odd, there

IF(‘;}'“

must be an even number of such terms, Thus, number of odd
degree vertices is even

Q.9 (a) Give an example of connected graph that has
(i) A Hamiltonian cycle but no Euler circuit
(ii) A Euler circuit but no Hamiltonian cycle
(b) What is the length of shortest path between the
vertices a to z in the Jollowing weighted graph.

Z

d

&
c
:) 3
6
b
4
a

Fip.

IRT.U. 2016)

Ans.(a)(i) A Hamiltonian cycle but no Euler circuit

AN
%

Fig. 1




etz

pMS.58 Euler circuit and Hamiltonian cycle ;

oth
Ansc) B 4
a
b ~— i \
d : ‘
o5 b
C
G, G,
Fig.

n G, Euler circuit: a,b,c,d, a
Hamiltonian cycle : a,b, ¢, d, a
n G, Euler circuit and Hamiltonian cycle are a, b, ¢, a.
, Eul

3) Explain the Minimal Spanning Tree. Also write
the Kruskal Algorithm for find Minimal
‘Spanning free. e

* (b) Giventhe Graph in following figure. Apply Prim’s
algorithm to obtain the minimal spanning tree.

Fig. [RTU. 2012/
Ans. (a) Minima] Spanning Tree

If ected wei

ree is::;nn cedweighted tree G, then its minimal spanning
. MNing tree of G s ,

of s edgeg jg i uch that the sum of the weights

of figure i mimum. For instance forthe following graph

.. cSpanning tree show Sl T raa
ONE Of Minimum weigh > n by thicker lines is the

a

(B Toch (v o
=B Tech. (IV Sem.) C.8. Solved Papers )
Kruskal's algorithm

An algorithin in graph theory that finds a minimal
spanning tree for a connected weighted graph. This means it
finds a subset of (he edges that forms a tree that includes
dvery vertex, where the total weight of all the edges in the
tree is minimized, If the graph is not connected, then it finds
faminimal spanning forest (a minimal spanning tree for cach
connected component),

Kruskal's algorithim is an example of a greedy algorithm,

This algorithm was written by Joseph Kruskal in 1956,

An algorithm for computing a minimal spanning tree.,
It maintains a set of partial minimal spanning trees, and
repeatedly adds the shortest edge in the graph whose vertices
are in different partial minimal spanning trees,

Algorithm of finding minimal spanning tree by
Kruskal's algorithm
Step 1: Create a forest F (a set of trees), where each vertex
in the graph is a separate tree
Step 2 : Create a set S containing all the edges in the graph
Step 3 : While S i nonempty
(a) remove an edge with minimum weight from $
(b) ifthat edge connects two different trees, then add it to
the forest, combining two trees into a single tree
(c) otherwise discard that edge
Atthe termination of the algorithm, the forest has only

onc component and forms a minimal spanning tree of the
graph.

For example determine the minimal spanning tree in
the following graph by applying K ruskal's algorithm,

Using the above graph, here are the steps to the minimal
spanning tree, using Kruskal's algorithm:

I. vitov, —costis] -add to tree
2. vytovy —costis | -add to tree
3. wvytov; —costis2 -—add to tree

Vil



( Discrete Mathematics Strm:ture‘r

(oS 59)

® N o oa

11.
12,

v, tovg —costis3 —add to tree

v,tovg —costis4 -reject becauseit forms a circuit

“vytov, —costis4 —add to tree

v,tov, —costis 5 —add to tree

vytov, —costis 6 —rejectbecause itformsa circuit
v,tovy —costis 6 —rejectbecauseitformsa circuit
v tov, —costis7 —reject because it forms a circuit

vytovs —costis 7 —add to tree

We stop here, because n — 1 edge has been added.
We are left with the minimal spanning tree, with a total

- weight of 23.
VJ
6
{
VS
Step 2 Y
1
v, — o
v, 1w
Oo———o
A\ 1 Vs
Step 4: : 2 v
|
v,
3
o——o0
Ve v, 1 v

Vs

Step 5:

Vi

Ans. (b) (i) Start at C

CE is the lowest-weighted edge (6).
Draw it in.

cC

E
(i) From Cor E
EA is the lowest-weighted edge (4).
Draw it in.

A

(@)

E
(iii) From C, Eor A

EB is the lowest-weighted edge (7).
Draw it in.
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(DMS.60 }——

(iv) From C.E,Aor B
BD is the lowest-weighted edge (3).

Draw itin.

(V}FromC.E.A.Bor D
DF is the lowest-weighted edge (4)
Draw it in.

+ All vertices have now been joined.
The minimum spanning tree is detennined.
Minimum spanning tree length=6+4+7+ 3 +4
=24 units.

z 20/Write a detailed note on Hamiltonian path and
iredeits with example.

Ans. Hamiltonian Path and Circuits : A Hamiltonian circuit
in a graph G is a circuit, that contains each vertex of G once
(except for the starting and ending vertex, which occurs
twice). A Hamiltonian path in G is a path (not a circuit) that
contains each vertex of G once. Note that by deleting an
edge in a Hamiltonian circuit we get a Hamiltonian path, so if
a graph has a Hamiltonian circuil, then it also has a
Hamiltonian path. The converse is not true. i.e., a graph may
have a Hamiltonian path but not a Hamiltonian circuit.

Example 1 : Find a Hamiltonan circuir in the graph :
3

W z

Solution: vwxyzv
Example 2 : Show that the following graph has a

Hamitronian path but no Hamiltonian circuit:

Y

Solution: vwxyz is a Hamiltonian path. There is no Hamiltonian
circuit since no cycele goes through v

In general it 1s not casy to determine if a given graph
has a Hamiltonian path or circuit, although often it is possible
to arguc that a graph has no Hamiltonian circuit. For instance
if G = (V, E) is a bipartite graph with vertex partition {V,
V,} (so that each edge in G connects some vertex in V| (o
some vertex in V), then G cannot have a Hamiltonian circuit
if [V # |V,l, because any path must contain alternatively
vertices from V| and V,, so any circuit in G must have the
same number of vertices from each of both sets.

Edge Removal Argument : Another kind of
argument consists of removing edges trying to make the
degree of every vertex equal two. For instance in the graph
of Fig. we cannot remove any edge because that would
make the degree of b, e or  less than 2, so it is impossible
to reduce the degree of a and c. Consequently that graph
has no Hamiltonian circuit.

Dirac’s Theorem : I/ G is a simple graph with n
vertices with n 2 3 such thar the degree of every vertex in
G is at least w/2, then G has a Hamiltonian circuit.

b

d
Fig. : Graph without Hamiltonian Circuit
Ore’s Theorem : If G is a simple graph with n vertices
with n = 3 such that deg(u) + deg(v) = n for every pair of
non-aucrcent vertices w and v in G then G has a Hamiltonian
circuit,

Example 3 : Which of the following graphs has a
Hamiltonian path or cycle :

==
‘Dlscrzte Mathematics Struciure p—

‘A

v, vy
(‘-) v, (H)
v, v
G,
v, v,
vy
(iif) (iv)
v, v
G, G,

Solution: (i) Graph G, has a Hamiltonian path v, v;, vy, vy,
v¢ but no Hamiltonian cycle.
(i) Graph G, has a Hamiltonian cycle vy, vy, vy, v, vy
(iii) Graph G, has a Hamiltonian cycle vy, vg, vy, vy, Vo, V).
(iv) Graph G, has no Hamiltonian path.

Q.21 Explain shortest path problem with example.

Ans. Shortest Path : Shortest path between two vertices
in a graph is the path of minimum length. Thus, if :

(a) The graph is without weights, the length of path
denotes the number of edges in the path and shortest
path between two vertices is the path with least
number of edges.

(b) The graph is weighted graph, the shortest path
between two vertices is the path of minimum length
(weight).

Shortest Path Problem : With each edge e of G let
there associate a real number w(e), called its weight. Then
G, together with these weights on its edges, is called a
weighted graph.

Fig. 1 : A (4. vo) Path of Minimum Weight
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