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Don't believe blindly on these most questions. It is just prediction based.
—(7oc-1)
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FmuTE AUTOMATA
(USE MY NWS) AND REGULAR EXPRESSION

Previous YEARS QUESTIONS

words, the exact state to which the machine moves cannot
be determined. Hence, it is called Non-deterministic

PART-A Automaton. As it has finite number of states, the machine is
called Non-deterministic Finite Machine or Non-

deterministic Finite Automaton.

&g: :E ; What is Moore Machine? [R.T.U. 2019] Formal Definition of an NDFA o
: An NDFA can be represented by a 5-tuple (Q, .0, q,

W r) \\’]]CI"C :
Ans. Moore Machine : Moore Machine is an FSM whose
outputs depend on only present state. It can be described by a
6 tuple (Q, L, O, 8, X, gy) where:

e Qs a finite set of states.

« Qs a finite set of states.
e ¥ isa finite set of symbols called the alphabets.

e 5 is the transition function where 84 Q x £ — 2

e T isa finite set of symbols called input alphabets. (Here the power set of Q (29) has been taken because in
o O isa finite set of symbols called output alphabets. case of NDFA, from a state, transition can occur to any

& is input transition function where 8: Q XX = Q combination of Q states.)

. " ST ? : o ' s g . . :
. Xl.sti?c.o.utput Lranstmn function \\¥1ereX“QXu >0 o q, is the initial state from where any input is
e g, is initial state from where any input is processed processed (q.€ Q)
- . 0 *
(g, €Q). State diagram Is as shown below : " ;
‘ 0 ¢ Fisaset of final state/states of Q (F < Q).

(::ll: 5 What is finite automata? . [RTU. 2019]

Ans. Finite Automaton : A finite automaton can be
represented by a 5-tuple (Q, Z, &, qq, F), where

(i) Qs a finite non-empty set of states.

(i) X is a finite non-empty set of inputs called input
alphabets.

(i) & is a function which maps Q » T into Q and is usually
called direct transition function. This is the function
whic!l.describcs the changes of states during the
transition, This mapping is usually represented by a

_ transition table or a transition diagr'am. )

(iv) qp e Q isthe initial state.

(v) Eée?n;sytl;; sn(:to?:ft';]n:: states. It is assumed here that

one final state.

[R.T.L. 2019]

m
Ans. Non-deterministic Finite Automaton (NDFA) : In
NDFA, for a particular input symbol, the machine can move
to any combination of the states in the machine. In other




________.,-‘-—-—"‘7

(Foc2 )J—""—""

String being processed

i =3

- ']" '—”I"["[ Lx‘llnpul

: (T J.__ _Lsdtape

— Readmg
O E— head
Finte ~s
control
Fig. : Block diagranm of finite automaton

(vi) Input Tape: The input tape i divided into squares,
each square containing a single symbol from the input
alphabet . The end square of the tape contain end-
markers ¢ at the left end and g at the right end.
Absence of end-markers indicates that the tape is of
infinite length. The le ft-to-right sequence of symbol
between the end markers is the input string to be

processed.
(vii) Reading Head :
at a time and can move one s
right. For further analysis, we res

R-head only to the right side.
(viii) Finite Control : The input to the finite control will be |

usually : symbol under the R-head, say a, or the present state
of the machine, say g, to give the following outputs : (a) A
motion of R-head along the tape to the next square (In some
a null move i.e. R-head remaining to the same square is
permitted); (b) The nexl state of a finite state machine given
by 6 (g, a). ) '
Initial states are ¢ and q.
Final state is (3.
For checking the string acceptability, we start the strin
from initial state. If we reach the final state after com iet' g
the string, then we say that this string is accepted by t 'p ing
system or not. , ¥ ITRRSTRON

The head examines only one square
quare either to the left or to the
trict the movement of




o
applications of pumping lemnia.

Give

% be the number of state
i) ) -~

:”':t ““hi:ht:::}‘:\s lx.mh,that W 2 n. Using pumping

® mfelnss «yz with xyf < nand {y| > 0.

|m“iu|,|; integer i such that ’?)" ze L. So

(il F::JL the assumption we have made in step (1) above

u::':l s not regular

then clear that, the most important aspect of the
frsthen € i .
; find 1 such that xv'z € L. Some times we have

hod 18 10 =
oo 1 by considering [Xy' z or some times we

v'2E
ppove Xy 2 vl 3
seed 10 use the structure of strings in L.

ParT-B

‘# = =
(.12 Consider the Moore Machine showir in figure. What
is the output for the input ababa?

(R.TU. 2019

% :
q 9. q, Qo 9
The oupu for the input string

= ababa is anaaaa

1 :
Convert the Jollowing Moore Machine into
Machine .

%\

Mealy

{ B.Tech, (IV Sem.) C.5, Solved Papers )
Ans. Mealy Machine @

Next State

[ PS [ i=a [ ofp [ ip=b |
D | o9 {0 @

L (T S L LI TR

SRR - N S . S | IS
Qg B I

Q.14 Design a FAwhich checks whether the given binary
number is even. IR.T.U. 2019/

s —
Ans. K

e %

AS Eyplain the difference between deterministic and
ton-deterministic finite automaton. [R.T.U. 2019]
OR

State the difference between deterministic and non
deterministic finite automata.

[R.T.U. 2015, 2014)

Ans. Deterministic and Non-deterministic Finite Acceptors

S. Deterministic Finite
No. Acceptors

1. |For every symbol of the
alphabet, there is only
one state transition.
Cannot use empty string
transition.
3. | Can be understood as
one machine.

Non- deterministic Finite
Acceptors

We do not need to specify
how does the NFA react
according to some symbol.
Can use empty string
transition.
Can be understood as multiple
little machines computing at
the same time.

3]

—_ Input Output
1

0

0

4 2 1

S [R.T.U. 2019]

4, | Tt will reject the string if|1fall of the branches of NFA
it end at other than|dies or rejects the string, we
accepting state. can say that NFA reject the
string.

The Computation ) e
(Theory of — i terministic Finite |

——

“Deterministic Finite
1;1 ik Acceptors | _ Acceptors
. We do not need to specify
i [For every symbol of the e P A eutt
alphabet, there is only how dqes the ool
one state transition. ‘,_agg_q_@_lf_lg_w_ﬁiﬂl'?__l__—'—__p
2. [ Cannot use empty string |Can l.ilS.c cmpty string
ansition. transition. _—
3. '(rf::ll‘:éc understood ns Can be un(.!erstood as ﬂ_'"“"Ple
one machine. little lnuchlnes computing at
the same time.
3 [T will reject the string if| If all of the branches of NFA
it end at other than|dies or rejects the string, we
accepting state. can say that NFA reject the
string. USRESSEE:
"5 [The wansition function is | The transition function is
single valued, multi-valued. .
6. |Checking membership is | Checking membership is
easy. difficult.
“7. [Construction is difficult. |Construction is easy.
8. [Space required is more. |Space required is
comparatively less.
9. | Backtracking is allowed. [Not possible in every case.
10. | Can be constructed for | Cannot be constructed for
__|every input and output. _|every input and output.
1. | There can be more than | There can only be one final
_lone final state. state.

—

Q16 (a) Describe the block diagram of a finite
autematon. Consider the transition system given

below

Ans.(a) Finite Automaton : Refer 10 Q0.3

43 is the final state so this strin
system,

‘ Forstring 111010, there isno
'S not accepted by the above transit

Fig.

Determine the initial states,

the acceptability

(b) Prove that for an )y transition
any two input string x and

Xq, xy) = &g,

For string 101011, the

gisaccepted by above

of 101011 and 1110]0.

»
x).y)

path value is

path value. So
10N system,

the final state and

Junction & and for

IR.T.U. 2016}
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en FSM .

)0

It
where

Mealy

i ‘
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Machine: '
Mealy Machine is an
present state as well as present input

FSM whose output depends or

can be described by a six tuple (Q, £, O, 8 X, gy

* Qs finite set of states
®  ZIis finite set of symbols called input alphabets
*  Ois finite set of symbols called output alphabets
*  Sisinput transition function where5: QX ¥ - C
g state *  Xis output transition function where X: Q-0
* & isinitial state from where any input is processec
(8. €Q). State diagram of Mealy machine is showr
below :
COgnizes the
Fig.
Moore Machine: Refer 1o Q..
Difference between Mealy and Moore Machine : Refe
lo Q. 10.
Minimize the Sollowing finite automata. Also Write
procedure for minimization,
[
9,Q }
Fig. [R.T.U. 2014
Aans. Step 1 : Firstly we make state transition table for abovs
given state transition diagram is given by.as follows,
State /5 [ Input
R T.U. 2015/ —
9o 9, q,
ing to each ni . 08 L.
chine that % T I
95 9 [q w q_:,]
9 A q,
Ly s 1Y%
Sy

(Theory of Comp tion e .
Step 2 : Now we obtain 7, by use of grouping

Ty = {{m}-{‘ln-qh‘h-‘l:-%}}
Step 3 : Partition set of non final stale:s in sucl: a ‘::y—;-:?;
equivalent states are grouped togclh’cr in separate sets.
is m, equivalence criteria used here is: -
Two states are said to be equivalent if their state transitions
corresponding to same input belong to same set. .
Step 4 : The step 3 is repeated for n,,n; and so on until we
get

Ty =Tkl

where k is any integer and =, , is required solution,
Step 5 : In this step state transition table is generated in such
a way that the set obtained in n, . are considered to be as

one state, the rest of state transitions in the state transition
table goes according to original state transition table,

Step 6 : State transition diagram is generated from state
transition table.

after applying step 3 we get uf
T -‘-{{44}l{CIo»Qh‘J:}»{CIJ},{QS}}

3 ={{‘§4}-{‘~lu»‘h-ﬂ2]~{‘I}}-{QS}}

Wwe get 1, =m so we stop here.

Now we generate state transition table for minimizing
finite automata. The transition table is as follows:

State /Y |

[‘Io-‘hﬂh]
(9,1

State transition dia

o gram for above state transition table
Isgiven as follows :

————

——

Q20 Constry,
10 folloy

Ans,
“Given,’

Step (1) : Fin

State (@
EERLA L
Reec by, ¥

Step (2) : No
(i) Startw
and [q;

(i) Thenw
we do |

(i) Then w
new st

(iv) Thenw
new st

Step (3) : Ne
NDFA using §
Table : S
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Q3) What is contexy free

Srammar?
- OR
Explain contexy Sree grammar in brief,

IR.T.U. 2019)

Ans. Context free grammar is also called type 2 Grammar,

1s called context free grammar it every
production has form 4 _, a where

G={h, X5

AeVy and ae(y, uy)
LmG:ﬂ&mameL

{$52a,5536555a45.5 aB, A — ab}, 5}

then G is called context free grammar.
——

—————

Q4 Define degree of ambiguity of W,

—_——

Ans. Ambiguity in CFG

ACFGG=(V,T,P.S)is ambiguous if there is at least
one string W in L{G) for which there are at least two different
parse trees, each with its root labeled S and yielding W. Each
parse tree corresponds to a lefi-most or a right-most
derivation. The number of different parse trees of a string W
is called the degree of ambiguity of W

Q.5 \Show the grammar
S — aB/ab
A — adB/a
B — ABb/b

is ambiguous.

Aans. The left most derivation tree for grammar is
S = aB (using S — aB)
S = ab (using B = b)
The parse tree can be given as

TOC.17

Theory of Computation

namely A - R,AB and B— ABR,;.
and introducing new symbol R,

which are not in CNF,
After further breakup
we can write the given

Still there are two production

a B
‘ grammer in CNF as,
, b S R, B|IR, R,
Left most derivation tree can also be given as : I ;
S=ab (using S — ab) &= B Kl
The corresponding parse tree is- . B— R, R, |b
R,— a
4 b R,— b,
Hence we have two ways to represent this grammar.
Thus the grammar is ambiguous, R 5
Q onsider the following production :
p § - aB/bA PART1 —
A = as/bAA/a '
B — bs/aBB/b ———
ind th ;
Jind the parse tree Q.8 Consider the context free grammar -
Ans, Parse Tree § = A4

String : aaabbabbba

g.‘f i Reduce the grammar to CNF .

.8 > aB/ab
A 5 adAB/a
B - ABbD

—_——————————e—e—eee——————e
Ans. Production A - a and B - b are already in CNF. If
introduce two more productions, say

R, —=a
R,—=b

above grammer can be written as;
S—RBIR, R,
A->RAB|a
B->ABR, [b

. A > A4AA\bA\Ab\a
Find the parse tree for the string bbaaaab
IR.T.U, 2019]

Ans. S = AA

= bAA

= bbAA

= bbAAAA
=> bbaAAA
=> tbaaAA

= bbaaaA

= bbaaaAb

= bbaaaab




(o)

Red k.
J €duce the following grammars in Ch
P 4 in omsky
@ S —>|410B.4 5144|650, B — 0BB
v > - g 115 |
(ﬂJ G =({S}, {a. b, c}. {S —>al|b|cSS}S)
(G)S >abSbla|ladbd—>bS|adAdb
- IR.T.U. 2016)

mm
Ans. (i) As there are no null productions or unit productions,
we can proceed to step |.

Step 1 : Let G, =(¥, {0.1).2.5) . where P, and V, are
constructed as follows -

(i)A - 0.B - 1 are included in P,.

(ii)S» 1A B= ISgiverisetoS - C,A,B— C,Sand
Cipl ]

(111) S - 0B A - 0S givensetoS - C,B. A - C,S and
Ce— 0

{(n)A— [AA B OBB give rise to A C,AA and
B C,BB

’ V., ={S.48C,.C

Step 2 : G, =(¥..10.1}.7.5), where P, and ¥ are
constructed as follows

() A-0,B-1,S-CAB-C,S

C, - 1.S5C.B. A C,5.C, — Oare included in P,

(ii) A—- C,AA and B — C,BB are replaced by
A-CD,D,—» AA B C,D, D, BB.

Thus G, ={5,4.8.C,.C,. D), D,},{0,1},{ A, 5} isin CNF
and equivalent 1o the given grammar where £, consists of

S 3CAICB.4A—01C,S|CD,,
B—+1|CS|CeDy,C, = 1.Cy = 0.0, — AA

and D, — BB.

(ii) Chomsky Normal Form

In the chomsky normal form. we have restrictions on
the length of R_.H.S. and the nature of symbols in the RiH.S.
of productions.

Definition : A context-free grammar G is in chomsky
normal form if every production is of the form A — a, or
A—->BC,andS > ~isinGif~ ¢ L(G). When ~isinL(G),
we assume that S does not appear on the R.H.S. of any

uchion. .
For example, consider G whose productions are

S —» AB| ~, A—>a B — b. Then G is in Chomsky normal

form. . -
Remark : For a grammar in CNF, the derivation tree

the following property :
2 Every node has atmost two descendants - either two

i | vertices or a single leaf.
mwmwa'h:n a grammar is in CNF, some of the proofs and

constructions are simpler.

{'B.Tech. (IV Sem.) C.S. Solved Papers )
The techniques applied in this example are used in the
following theorem.
Theorem : (Reduction to Chomsky Normal .Fnrm)
For every context-free grammar, there is an equivalent
grammar G, in chomsky normal form.
G = ({s}, {a, b, c}, {s > a/bless}, s).
Given production of G is
s — a/bl/css ... (A)
In a given grammar (A) following productions are in
CNF

s—a
s—b
Also, in the given grammar (A), following productions
is not in CNF
s — css
So, Consider the production
s — css
We write this production as
S —> V,ss (1)
v, > ¢ - (2)
Where v, is now variable.
So. from (1) and (2), the resultant grammar become

s—a/b/vss (B)
v, —=c '

Now in the resultant grammar, following production is
not in CNF
s> vss
Thus, Consider the production
S — V88
We write this production as
S = V|V, ... (3)
V3 —> 8§ v (4)
v, also a new variable.

So, from (B). (4), the resultant grammar become

s—a/b/vv,
Vi ¢ e (€)
Vz -» 8§

Thus, the resultant grammar (c) is in CNF.

Ans. (lii) Step (1) : Since S appears in R.H.S., we add a
new state. S, and S, — S is added to the production set and
it becomes : ) '

So - S
S — abSb |a] aAb

1 tion P o
Theory af Computd =
i =

i in the given
2 : There is no null production to remove in the g
g:guct.ioh. So move towards next step- | -
Step 3 : Now we will ve the unit prvodl.u:‘tuamr..hi'::h %
ol oduction W
in this question there r

Sy—>S

remo !
is only one unit p

After removing So = S» production becomes :

S, —» abSb [a] aAb
S —» abSb |a| aAb

A — bS | aAAb

Step 4 : Now make right hand side not contain more than 2

non-terminals or 1 terminal
Sp —> XYSY |a] XAY
S — XYSY |a] XAY
A— YS | XAAY

Step 5 : Now transform the production into Chomsky normal

X—>a
Y—b

form.
So —> XP Ja| XQ
S - XP Ja| XQ
A—>YS|XR
X—a
Y—b
P— YSY
Q — AY
R = AAY
Now production of S, S, A, X, Y and Q are in Chomsky
Normal form but P and R is not so make them.
P—>YM
R — AN
M5 SY
N - AY
Now the final production in Chomsky normal form is
So = XP |a| XQ
S — XP [a| XQ
A= YS|XR
X—>a
Y->b
P> YM
R — AN
Q- AY
M - sy
N - AY

()




~{ B.Tech. (IV.Sem.) C.S. Solved Papers"
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eft most
irse Iree.
TU. 2015/

ethis:

A — aS)

—baaB IS — aB]
—baaaBB (B — aBB]
—»baaabB [B - b)
—>baaabb$S [B — bS)
—baaabbaB [S — aB]
—»baaabbab$ [B — bS]
—»baaahbabbA [S = bA]
—»baaabbabba [A — a)]
Yield =baaabbabba

Right Most Derivation :
S — bA
—ba$S [A — aS)
—baaB [S — aB)
—baaaBB [B — aBB])
—baaaBbs [B — bS)
—baaaBbaB [S — aB]
—rbaaaBbabs [B — bS]
—baaaBbabbA [S — bA]
—baaaBbabha [A—>a
—>baaabbabba [B—=b
Yield =baaabbabba

Parse Tree

f Q'”EPIain Greibach normal form in detail.
‘ [R.T.U. 201+

w
Ans. In computer science and formal language theory,

context-free grammar is in Greibach normal form (GNF) i
the right-hand sides of all production rules start with a termine

Theory of Computation je=— : e
;bol. optionally followed by some vana‘b:gsl._'if":) :‘allowing
form allows one exception to this format restric Ifthe e it
the empty word (epsilon, £)tobea member;h gy
language. The normal form bears the name of il T

More precisely, a context-free grummarfls m‘
normal form, if all production rules are of the form:

A—ad Ay A,

or S—o¢

where A is a nonterminal symbo =3
AA,... 4, is a (possibly empty) ‘sequenf:e‘ of no_ntermll:la:
symbols not including the start symbol, S is the start symbol,
and £7is the empty word. i !

Observe that the grammar does not have left recursnfms.

Every context-free grammar can be transformed into
an equivalent grammar in Greibach normal form.

Some definitions do not consider the second form of
rule to be permitted, in which case a context free grammar
that can generate the empty word cannot be so transform‘ed.
In particular, there is a construction ensuring that the resulting
normal form grammar is sizc at most O(n*), where n is the
size of the original grammar. This conversion can be used to
prove that every context free language can be accepted by a
non-deterministic pushdown automaton.

Given a grammar in GNF and'a derivable string in the
grammar with length , any top-down parser will halt at depth n.

], ais a terminal symbol,

Q.13 The production of any grammar & is given by
§ — 0B/14 A — 0/08/14A4
" B — 1/15/0BB

For the string 00110101, find leftmost derivation,
rightmost derivation and derivation tree.

[R.T.U. 2013}
Ans.(i) Left most derivation
S—>0B,.
- 0 ?
001B, S = 0B = 00BB =
o011 aor 00IB = 0011S =
0011 0110B =5 0011018 =

001101% o
00110101

(ii) Right most derivation

S- 0B

00BB
00BTS
00B10B
00B10fS
00B1010B
00B10101
00T10101

§$= 0B= 00BB = 00B1S =
or 00BI0B = 00B10|S - 00B1010B
= 00BI0I01 = 00119104

) Deri'

@

Fig. : Du
—
Q.14 Convert U}

S —» Al
A —» B:
B - S/

——
Ans. S/

A—> B

B> S

Step 1:'Re
productions are

A — .

Ay —.

Ay — .

Step 2 : (a)

A -,

(b) A4, proc

(€) 43, >a

d) 4 -,

(replacing 4, —»
Ay =%

Step 3 : 4,

Ay —

Ay —

lml‘oducin!

The resultj,

A
&~
- Y
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(Theory of Computation )-

Q.17 Find a grammar in Chomsky Normal Form
equivalent to S—»a AbB, A—»a A/a, B — bB/b.
[RT.U. 2010, Raj. Univ. 2005, 2004, 2002/

Ans. As there are no unit productions or null pro@uctions we
need not carry out of elimination of unit productions or null
production. We proceed to next steps. :

Let G, = (V'y {a, b}, P|,S), where P, and V' are
constructed as follows :

(i()A—>a, B> b are added to P, ,

(ii) S—» aAbB,A —>aA,B — bB yield S > C,ACyB,

A— CA,B— CB,C,—» a,Cy —> b.
~=1{S.A,B,C,.C,}. ’
P, consists of '
S>CAC,B,A> C.A,B— C,B, C,->a,
' Co—>bA—>a B,
S — C, ACyB is replaced by § - (C,C,, C, - AC,,

C, > C,B. The remaining productions in P, are added to P,.
Let

G.2=({Ss A, B’ Cal Cbs CI: C2}: {a) b}a PZ} S)a
where P, consists of § —» Gy ~> AC,,C, - C,B
A—»C,A,B-—)C,,B,Cn-—)a,Cb——)b,A——) a,andB — b.

G, is in CNF and equivalent to the given grammar.

Q.18 Find a grammar in GNF equivalent to the grammar
ESE+T|T.,T> T*F|F,F > (E)|a

[R.T.U. 2009;

Aps. ESE+T|T
T—>T*F|F
F—(E)|a

GNF ( Greibach Normal Form)

GI_\IF is defined as the normal form of 3
Production are in the format

A —aa where ael =
ae(VNuZ)

.« maybe A
In the given question,

Terminal symbo|s Z={a} -
Non-terminals v, ={E, T, F, + ()

| Al A, A A, A, A, A
We convert 3] V, into ALALA, |
Now, the Production ryjeg are

Al e AIA.'Az I AZ

grammar whose

1)
A AAA, (A, 2)
Ay S AAA, (2 (3

Since Briii (Requm
e (Requipgg ' 3
and AlSA, = A>3 (Reqy; f )Q
Now, from (1) Wdfo,m). \
A - AlALA, b
From (iii) A, > a
-y A, —aA A, (Required fgrm)
Similarly (2) g
A, > AZA,AJ
A, > aA A, (ReqUil.‘Ed form)
Now
Ay > AAA,
A, > AaA,
Hence, the converted grammer in GNF j,
A —>aA A, |a
A, >aAA| |a
A, >a
In the original symbols
E—sa+T|a

Toa*F|a

F—(a)|a

e l
Q.19 Find a grammar in CNF equivalent to the grom
S=>-S|[s>8]plq (s being the only variable).

[Ma.\ll

Aps. 5, ~S|[S:)S}]p|q
Vy = {S}

L={~[.>].p.q}

S — Start symbol production

S—~S§

S [so5]

S—>p

S—gq i

Given context free grammar is free from”

unit production and useless symbol. M&

Step 1 : Eliminate null production.

iable 0
Result : In the grammar no null variab
step.

o

Step 2 : Eliminate unit production- : 50""”

50 SO
Result : There is no unit production s /
also.

"l Ve Y. V. P
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Q.1 Wiste three properties of CFL.

Properties of Context Free Languages

The reverse of a context-free language is context-free,
but the complement need not be.

2 ¥

Every regular language is context-free because it can |

(m)
be gescribed by a regular grammar.
(m) The intersection of a context-free language and a

regular language is always context-free.

Give definition of PDA.

Aas. In the theory of computation, a branch of theoretical
computer science, a pushdown automation (PDA)isa
type of automation that employs a stack. Pushdown
automata are used in theories about what can be
computed by machines. They are more capable than
finite-state machines but less capable than Turing

machines. |
- fi Take our first string abb;
nite
control |6 B A=,
P 3(q;. b)=qz |
e 8(az b)=a, i
I_l ot - I tate S0 this sir! ‘ Uﬁ""
I a] l—] and q, is not final s
' | ing for the &
s Now take the second strifg
Fig. | system aba: /:

Q=14 9;» 2} '
1.S. = qq
Final state = g, |
T ={a, b} |

&4
R Bt
;__::.-‘ 3 -(';TL' lhf‘ ‘;”1111_ s dCh
- ¥ sl b
So s 4 aprine for the @
« . the =
\“\\ [ah~
-
2 !
M

—
ADS. Pus

hdown Autom.atoed

Fig. : Moule
Definition : 4 s

(%) Aspecial moar 4.
the pushdan

M) The set of fina <:

(Vi) The Sranic i 1

set of finire

g“""h\)‘ ~ally 3

20N ally. a




(T553%)

Let us assume 3
Assume €q. (4) when the number of moves is n.

gq uv, 8) I (q. v, a) ' (5)
@i :)‘:’:‘ "":“ in eq. (5) is obtained either fr.om
s A, Q. A, a')or (q, a, a, i
case (5) cam be aplit as q - '?IT = (q. A, A). In the first

(Q, uv, 8) |2 (q, v, @’A) I~ (q, v, ayx,) = (q, v, @)

By induction h hesis, S =
jatadlnad by A CJ:TOI sis, S => uAa,, and the last move

Thus

S = uAaq; implies a,a, = a. So S=uAa, >ua,a,=ua.

In the second case (5) can be split as )

(qQ,uv, SY > (q. av. a@a) I (q, v, &)

Also u = u'a for some u' € T.

So (q, v'av, S) & (q, av, aa) implies (by induction
hypothesis) S = u'aa = ua. Thus in both cases we have
shown that § = ua. By the principle of induction eq. (4) is true.

Now we can prove that if w € N (M) then

w e L{G) As w € N(A),

(g, w, S) = {q. A, A). By takingu=w, v=A, a=%and
applying (4), we get S = wh = w

i.e. w € L(G).

Thus L(G) = N(M)

Expllin the steps involving in conversion from

context free grammar (o pushdown automata with

example. [R.T.U. 2013}
Ans. Suppose we have to construct a PDA A equivalent to
the following CFG
8 —» 0BB
B — 0S/15/0

Now, we can define PDA A as follows: /

A =({q}. {0, 1}, {S,B,0,1}.58,9,5,¢)
Where 3 is defined by the following rules:
R,:8(.~ 5= {(a 0BB)}
R, : 5(a, A B)= 1(, 05), (4. 15), (4. 0)}
R] : 5 (ql oc 0) e {(Q- ’\}}
R,:8(g 1, D=1{@ )}
Note : Rules R, to R4 generated according to given CFG for
example
We generated rule 2 (R,) for
B —» 0S/1S/0

Now if we want 1o test whether a string is N (A) or

not, we an test as follows :

For example, _
- 4 ether 010000 is in N (A).

We want to test wh

{B.Tech. (IV Sem.) C.S. Solved
(g, 010000, S)
(g, 010000, 0BB) by R,

(q, 10000, BB) by R,
(q, 10000, 1SB) : by R,
(q, 0000, SB) by Ry
(q, 0000, 0BBB) by R,
(q, 000, BBB) by R,
(g, 000, 000) by Ry
(‘I- Ny A) b)" R3
Thus
010000 =N (A)
Q.7/ Convert the given PDA to CFG
A = ({gp 41 {a, b}, {25 2hS 9o Zo¥)
S Ps given by
S (qp b 29 = (90 220
S (qp 1, 29 = (qp 1)
S (qp b, 2) = (40 22)
S(gpa 2)= qn 2)
S (Qoo b’ Z) - (Q.f! ")
[RT.U. 2012/

S (qp a2 = (40 20

Ans. G =y, {a, b). P, S)
Where ¥y consists of S, [4o. %, 40
(90: 20+ @1)s (90, 2. G0 [dor 200 41> (912 %00 o)
(91 Zor i) L91s 20 G0) [y 2]
The productions are

B : 5 = [4os70s 0]
Py :S = [q0,20, 1)

8(g0, b, 20) = (g0, z 2,)} yields
P, :[q0» Z0» 90] — bl40> 2 90)[90> Z0> %0)
#, :[go, 20> 90) > bl90, % ¢ 1la:: 20s 90l
Py :[do» 70+ 11> bl40, 2 90)[d0+ 20 @]
Py (90> 70, 1) = 140, 7, @ )la1s 20> 91]

8(go» A 70) = 1(qos A)} Bives
Py : (99, 20, 01> 1

8(qo.b, 2) = ((do, 22)} gives
B : (90, 7, 90) = B0, 2, 90)(90+2: Q0]
B : g0, 2, 901 = Blgo, 2, 41 ][9), 2. o]
Po (90, 2. 1) = b0, 2, 0)[40.2: 4]
B, :1q0, 2, q1 = U0, 7, 9090, % 4]

8(qp, @, 2) = {(q), 2)} yields

pers ).

P" :lqa. 1-40"'""
:.q‘l—tﬂ‘ﬁ. z, 91]

PYEX )

Ry l90r :
8(q. b, 2) = (g, ~N gives
PN gy & q;l-—" b

8(gy.a. 20) = (40" z0)) Bives

Rs :1:70:90) —» dlqy. %0» %0)

Fs gy 209 | Ed alqo: %0+ @)
gives the produci‘ums inP.

P - Fe
What is PDA, Explain. C onstruct PDA equivalent

e o L= fa" &""a"/m M 2 0}. JRT.U. 20123}

Ans. PDA : Refer 10 oA
The PDA A accepting {a
as follows :
A=({qp i} (2. b}
Where & is defined by

R,:8(q.2.2)= {(9..82, )]

R, :6(q,.a.8) = i(q.. aa)|

o p® g™ m >0} is defined

(8.2} 8. GorZ0-9)

R, :6(qg,.b.2)= {(q“ aj.i(
R, :5(q,.b.a)={(a.3)}
R,:5(q,.2,a)= {(a,.»)}

R, :8(a.~2) = {6 A))

We start storing a's unti
input symbol is b, the state changes, but
occurs. Once all the b's in the input stnng
remaining a's are erased. Using Ry, 7 15 erased. So

(g 3" b™ "™, 29) [*....... (Q1s A, %) |

This means that a"b™""a™"
that

N(A)= {a’b'“"a"' fm z 0]
By using Rule

Define G = (Vy, {a, b}, P, S) where V,, consisting of

(9o» Zo» Gols (915 Zo» Go)» [Go» B o). (915 2 Go)

(90» 20 1), [91: 20, Q). (90> 2.G1). (91, 8, 6]
The production in P are constructed as follows

The S - production are
Pl "S'_’[qu'zﬁ-"lol
P :S—-)[qu_zmq']

8(q.. 2. 2,) = {(q.. 2z, )} induces

] a b occurs. When the current
no change in PDS
are exhausted, the

(Qys Asn)
a™" ¢ N (A). We can show




—{(B.Twch. IV Sem) C.S. Sob d Papers )

¥ s in nitial 1D (G0, W,
ards. w is in N(AL IfA is in inihia

o0 )} ﬁ::mmmpymusingl"thes_\mbohd
.00 :&&-mwaxnmu;fnng;mm
apphcat of w, and not tran: g

fle.2) ‘mi-_ - —

Write short mote on Pumping Lemma for CFG
[Raj.Univ. 2007/
=le-~)) ———

Ass Pumping Lemma for Context-Free Lngn.nges :

The pumping lemma for context-free langua_gcs gives a

bans method of generating an infinite number of strings from a
grven sufficiently long string in a context-free language L. It

o the

i

A)
by

s wsed (o prove that certam languages are not context-free.
The construction we make use of in proving pumping lemma
yeeids some decision algorithms regarding context-free
angages

Lemma : Let G be a context-free grammar in CNF
#d T be 2 derrvation tree in G If the length of the longest
path in T is less thas or equal 10 k, then the yield of T is of

lengsh less than or equal 10 25

A/ \.
£\ /2

r;‘n-r-u-u—r,.ur,.

M:Wcm&emkwm&uiononk.melength
djh:‘lusnpuhforallAm{RecdlmA-uee is a
MMMWMMA).MmIongest
Mu-A-_uuuoflenml,mcmothmonlyoneson
Whm:ld:dya Bmiml(ufhenlﬂumot_hutwosons. the
m&h{:m;'%m:ywld is of kzngth 1. Thus, there is
Assume the result for k=1(k>1). Let T be an A-tree
m-hnpupdwflnﬂileuﬂnnoreqmlmk.m;,]-,
merouofThue_xmjylwomwithhbek A and 4,

as roots have the |
Plﬂﬂﬂfmyhhuﬂmorequlllok—l i o

- :
If w and w, are their yields, then by induction
hypothesis, ju, | < 22 fwg| s 22,

SOlbeyteldof Tw= “1”201"]

the principle of induction, the i
hence for all derivation t;ee,,mh 15 true for all A-rees, and

"}‘SZ‘”: +24-1 a2 By

Theory Computation
Th::rem : (Pumping lemma for context-free

Janguages): Let L be a context-free language. Then we can
an : ;
find a natural number n such that :

(i)Every zel with |z| 2 # can be written as uvwxy for

some Strings u, v, W, X, ¥.

(i) [wx] 21

(i) [wwx|<n

(iv) whwx*yet forall k20

Proof: When A e L; we consider L—{A} and construct
agrammar G =(¥y,Z.P.§) CNF generating L-{A} (when
A g L, we construct G in CNF generating L).

Let [Fy|=m and n=2". To prove that n is the required

number, we start with ze L.i:|22”'. and construct a

derivation tree T (parse tree) of z. If the length of a longest

<2™ (since z is the

path in T is at most m, by lemma, |z

yield of T). But |z|22" > 2", So T has a path, say T of
length greater than or equal to ,+1T has at least m + 2
vertices and only the last vertex is a leaf. Thus in T all the
labels except the last one are variables. As [¥y|=m some
label is repeated.

We choose a repeated label as follows : We start with
the leaf of [ and travel along upwards. We stop when
some label, say B, is repeated (Among several repeated labels,

B is the first). Let v; and v, be the vertices with label B, v

being nearer the root. In I, the portion of the path from v, to

the leaf has only one label, namely B, which is repeated, and
so its length is at most m + 1,

LFl T, and T, be the subtrees with Vis vz asroots and z,,
W as yields, respectively. As T is a longest path in T, the
portion of r from v, to the leaf is a longest path in T, and of

lengthltmoslm+I.Bylemmalzls2"‘z <2™M(si i
the yield of T)), ' £ Lol

For better understanding, we illustrate the construction
for the grammar whose productions are

S AB A —+aBla,B - bd|b, asin Fig.
In the figure,
I‘=S~+A—»B—;A-p8—>b
z = ababb,z; = bab,w = §

veba, x=Au=ay=p

Fig. : Tree T and its subtrees T, ang h

Aszand z; are the yields of T and a Proper sub
of T, we can write z=uzy .As z;, and w are the yie:
T, and a proper subtree T, of 7;, we can WIlE 42

Also |wwx|>|w|. So x| 21. Thus, we have z=ma
[vwx| < n and |wx|21. This proves the points (i)-{iil]dq
theorem.

As T is an S-tree and 7,,T, are B-trees, we g

S uBy, B vBx and

B2 w, AsS 2 uBy = uwy,u’wi’yel.

For k21,85 uBy > w'Bty 2 whw'yel
proves the point (iv) of the theorem.

Corollary : Let L be a context-free language !
the natural number obtained by using the pumpin

Then (i) L+ ¢ if and only if there exists wel wib
and (ii) L is infinite if and only if there exists el
nslz|<2n .

Proof : (i) We have to prove the ‘only if P‘ﬂ'“:&
with [z| 2 n, we apply the pumping lemma to writ¢ 13.
where 1<|w|<n.Also uwye L and IIM’]‘HA
pumping lemma repeatedly, we can get z'el
|| <n. Thus (i) is proved.

a?
(i) If 2 £ such that ns|d<2n, by pumP™" |

4 k I’of‘u' |
We can write z =uwuwxy. Also, whwx'yel ¢

Thus we get an infinite number of elementsif - fH‘

sl

SR R : 3
if L is infinite, we can find ;e £ with 2"

there is nothing to prove, Otherwise, W¢ wle :
pumping lemma to write z = uyway and get ™ :

well (refe©
Theco!
jven con!
nls"ﬁmms :
We us€
ot a conte
free. By aPF
The pr

steps -
Step 1
number obt

?

Step i
using the p
Step .

acontradi




TURING MACHINES

gvious YEARS

s
m—

achine?

[R.TU. 2019]

e

=matical tool equivalent
d by the mathematician
e then the most widely
itability and complexity
\put output relation that
given in binary form on
nsists of the contents of

tents of the tape change
M, also called a finite
. The FSM is determined

the transitions between

get land the character read
[ 'e FSM will be in, the
i‘put on the tape (possibly

Unchanged), and which

R —

QUESTIONS

This is why we introduce the notion of a universal turin
machine (UTM), which along with the input on the tape, take
in the description of a machine M. The UTM can go on the
to simulate M on the rest of the contents of the input tape. /
universal turing machine can thus simulate any other machine

Q.2 l;Wlmt is Turing Machine?
: OR

[R.T.U. 201

Explain turing machine in brief.

Ans. Turing Machine : The Turing Machine (TM) is a simpl
mathematical model of a aeneral purpose computer. In othe
words, Turing machine model is the computing power of

e Turing machine is capable of performin

computer ie. th i
y any computin

any calculation which can be performed b

machine.
The Turing machine can be thought of as a finite stal
automaton connected to R/W (read / write) head. It has on

tape which is divided into a number of cells.

erties of context — sensitive language

.3 Explain the pro
=5 e [R.T.U. 201

Ans. Context Sensitive Language
. Context sensitive languages are 2

grammar.
« Context sensitive language

context.
» The production is of the form :

doy — $BY
¢ — left context
v — right context

Iso cal_led' type

s have both left and ri g

Here

bed -
In this § — A i
the right hand side (R
The Turing m:
sensitive language :
M =(Q,Z,I",8.q‘
Here
Q = Finite non ¢
¥ = Finite non ¢
.+ I'= External sy
5 — Transition
q, = Initial state
AorborB=BI
F = Final state.
I - Maps Zx(

e
Q.4 Prove the tran:

sensitive language.

 _
Ans. Transpose : Tr:
sequence of symbols i

Let § =
g7 =

It should be note
of symbols then new st

"Suppose L=
Here W =12 s
Traﬁspose (wW"

Q.5 Define indexed

Ans. Indexed languag
They are described t
recognized by nested s

Indexed languages
languages. They qualif
and hence satisfy man
are not closed under int

s

= —
Q.6 Define union in |




quence
string.
> by 4}

en,

c
_

guages.
can be

sensitive
nguages
ver, they

|

BALF W W W W WS B REASEL PEAW A WWUOBEW YW YY a8

strictly weaker device.

@ Design a Turing machine oyer {1, b} which can
mpute a concatenation function over X = {I}.

If a pair of words (w1, w2) is the input, the output
has to be wl w2, [R.T.U. 2016/

AMSESVIETFSS vV s \‘II s ™y W=

Ans. Suppose w, is given as a string w, =11 and w, = 111

and the two words are written in the input tape separated by
a blank as

Bi{lll1|B|l|1{1]|B
. Input tape
The output tape should be
BII[1[1]1]1]B

Output tape

When the blank symbol is found, it must be replaced
by 1 and when the rightmost 1 is found, it is replaced by B.
The tape head return to the starting position.

The machine M can be defined as

 (denoted
1 distinct

Mz({q()!qh q2s q3sqf}s {]}s {]!B}’B’qo’ B’ {qf})

The moves of the Turing machine are shown below in
the form of transition table :




(TOC.42

Table : Transition Table
;__...——-—-—"'_-_——-—‘_—'!""-“"_"_" -

]

Present State | 1 —'/E’r
—> Qo (qO: ]1 R) (Ch, l, )
q: ((]1_,,1, R) cesd ( 2 Ba L
92 (ija B: L‘) .
g3 (g3 1, L) (qr, B, R)
qr g -

The transition diagram correspo

VIR

1/1/R

nding to the above

transition table is shown in following figure.

/BIL

B/V/R B
go G

1/B/L
VWL

B/B/R
.

Fig. : Representation of Turing Machine of Transition Table

Ans. |
the gi
a total
string
sieve |
follow
then re

l



tallQ's

0000’

JwWer

the
1002)

etus
333.
ning
five

. the

Q-
ea

o

moves to the lefi untjl
left most 1, 2, 3 aumll it finds

are replace by bhnk5.4 are repeated until all |, 20

B,
Tech, (v Sem,) C.8; Solved Pape
P

the left mog
Annd moves to the right. M :1:\3 :
©r Scanning the r ek

re replac
Step 5: Steps 1 _ep aced by b.

sand 3%
Thus we can construct as-

Present state Input tape Symbol
2

3
e LJa:R - . L
q; Tq;R LqR
; 2 LqsR 2 R e
QJ - 2q R L—qu
a i 5 %i:hl“ Hq;{i
s lqeL 2q4L. _S ’ il
q& I qh]‘ c{s LJQiL
q';( = ] " L—lchR

for which there exists a Turing mac
function) that will halt and ac
- string in the language as input ;

| or loop forever when presented with a stri

This is the required solution,

: Q.14 ;Wr:lq short note on recursive and recursively
enumerable language.

[RTU. 2013, 2012, 2011, Raj. Univ. 2007, 06, 04, 03

Ans. Recursive and Recursively Enumerabl
Langl‘lage ¢ In mathematics, logic and computer science,
recursively enumerable language is a type of formal language
which is also called partially decidable or Turing-acceptable
It is known as a type-0 language in the Chomsky hierarchy
of formal languages. The class of all recursively enumerabl
language is called RE.

Definitions

There exist three equivalent major definitions for the

concept of a recursively enumerable language.
1.

A recursively enumerable formal language is i
recursively enumerable subset in the set of all possible
words over the alphabet of the language.

A recursively enumerable language isa formal languagt
for which there exists a Turing machine (or othe
computable function) which will enumerate all valilc
strings of the language. Note that, if the language ©
infinite, the enumerating algorithm provided can bt
chosen so that it avoids repetitions, since we can (es
whether the string produced for number n is “aireald)f
produced for a number which is le_ss than n.'lf it i
already produced, use the output for input 2+l u:steac
(recursively), but again, test whether it is “new’.

A recursively enumerable language is a formal languagy
hine (or other computabls

cept when presented with an

but may either halt and rejec
ng not in the

he R/W head

&
(@

FOCAS

language. Contragt i
: this to recursive language, which require
that the Turing machine halts in all “'g: = §
Closure Properties
lhc’mnlf'.er:lureziw:l).r enumerable languages are closed under
owing operations. That s, if L and P are two recursively

enumtfrable language, then the following languages are
recursively enumerable as well :

* The Kleene star L* of I,

* The concatenation of L, and P,
* The union.

* The intersection.

Note that recursively enumerable languages are not
c!used under set difference or complementation, The set
dlffE-U:lJce L-P may or may not be recursively enumerable.
IfL Is recursively enumerable, then the complement of L. is
recursively enumerable if and only if L is also recursive. There
are lhrcg possible outcomes of executing a Turing machine
over a given input, The Turing machine may

* Halt and accept the input
* Halt and reject the input or
e Never halt.

A language is recursive if there exists a Turing machine
that accepts every string of the language and rejects every
string (over the same alphabet) that is not in the language.

e

—— e

Write short note on :
Halting problem
(ii) Multitape and Multi dimensional turing

machine [R.T.U. 2012, 2011, Raj. Univ. 2007f

(b) Design furing machine M that recognize the

language [aﬂbfc- /niz ;] IR.T.U. 2012, 2011]

Ans.(a) (i) Halting Problem : For a given configuration of
a TM, two cases arise :
(a) The machine starting at this configuration will haltafier a
finite number of steps.
(b) The'machine starting at this configuration never halts no
matter how long it runs. Given any TM, problem of
determining whether it halis ever or not is called halting
problem.
To solve the halting problem, we should have some
mechanism to which given any functional matrix, input data
type and initial configuration of the TM for which we want to
detect, determine whether the process will ever halt or not.
In reality one cannot solve the halting problem. The halting
problem is unsolvable. That means, there exist no TM which
can determine whether given TM “T’ will ever halt or not.

of halting problem of Tu
is reducible to problem
used to solve problem A.

decidability
sed 1o prove the v
hincp.f\w say that problem A
on to problem B can

Reduction Technique is U
ring mac

13 if a soluti
blem of finding sorme root of

Example : If A is the pro
I m of finding some root of

Aol 2w and B is the proble
?_7 iy a factor of

then A is rcducibic‘lo B.As x

P -2=0,
is also a root of

-3t 42, 8 100t Of 7-2=0

A=t e2=0-
Note : If A5 _
is decidable. If A is reducible to Band Als
B is undecidable.

reducible to B and B is decidable then A
undecidable, then

Theorem : HALTyy = |(M,w)] The Turing machine M

halts on input {w} is undecidable.
Proof : We assume that HALTyy is decidable and get a

contradiction. Let M, be the TM such that T(M;)= HALTyy
and let M, halt eventually on all (M, w) We constructa TM
M, as follows:

I. For M,.(M.w) is an input.

2. The TM M, acts on (M,w).

1.0 M, rejects (M.w) then M, rejects (M.w).

4 If M, accepts (M.w), simulate the TM, M on the

input string w until M halts.
S, If M has accepted w, M, accepts (M,w); otherwise
M, rejects (M,w).

When M, accepts (M,w) (in step 4), the Turing machine
M halts on w. In this case either an accepting state q or &
state q' such that 8(g",a) is undefined till some symbol a inw
is reached. In the first case (the first alternative of step 5)

m, accepts (M,w). In the second case (the second
alternative of step 5) M, rejects (M, w).

It follows from the definition of M, that M, halits
eventually.

AlsoT(M,)=|(M.w)l The Turing machine accepts
w}=Ary

This is a contradiction since Ay, is undecidable
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|
m given by path values of
’A;di; " self or fromgp toq (note that we have
ﬂbﬁ.ﬁrsu'“qﬂ od @) We can construct T(M) by
wor
e o in figre: arrow$ do not come into g, the
witselfare self-toops repeated any number of
nding path values are 0',i>1. As no
or g, the paths from g, tog, are
. The corresponding path
1. As the initial state g, is

wcmﬂﬁoqu 104

,fﬂ‘fﬂfmqo ...... ’
;wmo,},'whereiZOand;z
@;ﬁrnlsm:e,AeT(M}. Thus,

r(m)={o'" |i.j20}

e, TM) =o' 1ij 20}
The transition system M is concerned as follows :

(i) The initial states of M'areg, and g, .

(if) The (only) final state of M'is qq -
(i) The direction of the directed edges is reversed. M'

spven i figure.

0.l
) ]-‘ng : Finite Automaton of T(M)”
From (i) - (iii) it follows that

T(MY)=T(M)"

Hence, T(M)T is regular.
1
n sbove case, we can see by inspection that

M) =lyigf 15
) |I O‘"-JZOI . The strings of T(M') are obtained

Bpath v .
elues of paths from g, to itself or from g, to g -

L ParT-C

0

| Explaj

n Turj 4 "

'*’Hen;,:::g Machine with its various way of
[R.T.U. 2019]

Explaip 4 o
””‘“M:z’:,g ;lachinf with its various ways of
- Draw diagram wherever required.

o R AT

JR.TU. 2012/ \_
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Ans. (i i
ns. (i)Standard Turing Machine : A turing machine M j
&

defined by
M= ( QLT3 q,0F)
Where
Q = Set of internal states
Z = Input alphabet
I' = Finite set of symbols
o eF aspecial symbol called the blank
qp € Q isthe initial state
F < Q is the set of final state

Control Unit

Read write head

g [ v

L J Tape
(ii) Turing Machine as Language Acceptor : Turing
hine can be viewed as acceptors in following sense. A
string W is written on the tape, with blanks filling out the unused
portion. The machine is started in the initial state g with the
read write head positioned on the lefimost symbol of w. If,
after a sequence of moves, the Turing Machine enters a final
state and halts, then w is considerd to be accepted.
Q% T,8,4q,0F) bea Turing machine. Then

mac

Let M= (

the language accepted by M is
L(M)= {w eI’ :g,wi* xq,x, forsome g, € F.x,X; € ["“}

(iii) Turing Machine as Transducer : Turing Machine are
not only interesting as language acceptors, they provide us
with a simple abstract model for digital computers in general.
Since the primary purpose of a computer is to transform input
into output, it acts as a transducer. If we want to model
computer using Turing machine, we have to look at this aspect
more closely.

We can vie
implementation of a function fd

w=1(w)
provided that

GoWt* 9
for some final state q¢

w a Turing Machine transducer m as an

efined by

. For realizing a compsite TM, the functional matrics of the

(ﬁmﬂl of Computation}
Defination: A t?unction f with domain Dis said to be Turing-
computable or just computable if there exist some Turing

machine M= ( Q,Z.T. 3, q,, 0, F) such that
g, €F

qwl'*, q,f(w) A

foralsow ¢ D
(iv)Composite Turing Machine (TM) and Iterated 1
Turing Machine : Two or more Turing Machine can be
combined to solve a collection of simpler problems, so that
the output of one Turing Machine forms the input to the next
Turing Machine and so on. This is called as Composition.

increasing and relabelling
propriate state rather than
f the performance of each

component TMs are combined by
I and suitably branching to an ap
the balt state at the completion o
component TM.

Compoiite TM
ving a combination TM is by applying its
t respectively. This is called as iteration or

Another way of ha
own output as inpu

recursion.
The idea of composite TM gives rise to the concept of

breaking the complicated job into pumber of jobs implementing
each separately and then gombining them tpgether to get
answer for the job required to be done. Therefore, we can
divide a problem into simple jobs and design different TM, for
each. Then we can take the composition of all TMs to gel
work done what we want initially. Modular programming is
definatcly influened by CTM (Composite TM).

—_—
™
Input Output
r
Iterative TM

or UTM) : Refer to Q.1.
(vi) Multistack TM: This symbols to the left of the head of
the TM can be stored on one stack, whilé the symbols on the
right of the head can be placed on the other stack. On each

(v) Universal TM (




F RN W Ve AWETTO ]

exist some Turing
it

VI) and Iterated
2 Machine can be
r problems, so that
he input to the next
i as Composition.
»nal matrics of the
ing and relabelling
te state rather than
rformance of each

A is by applying its
alled as iteration or

e to the concept of
f jobs implementing
em tpgether to get
Therefore, we can
an different TM, for
1 of all TMs to get
\ar programming is
y TM).

Output

to Q.1

he left of the head of
¢ the symbols on the
ither stack. On each

¢ i ification of language with
22 Efplain Chomsky classifica
dﬁrelp of suitable example. JR.T.U. 2019, 13, 12/

S b

close_;' to the top of the stack. This type is called as Mullistack
Turing Machine.

OR
Write short note on Chomsky Hierarchy of languages
in detail.
[R.T.U. 2016, 2014, 2011, Raj. Univ. 2007, 2006, 2004,2003]
& OR
Discuss chomsky hierarchy in detail. [R.T.U. 2015/

wﬂ
Ans. According to Chomsky (Name of Scientist) there are

four types of grammar:

(1) Type-3 grammar or regular grammar

(2) Type-2 grammar or context free grammar

(3) Type-1 grammar or context sensitive grammar

(4) Type-0 grammar or unrestricted grammar

(1) Type-3 Grammar or Regular Grammar :
These types of grammar follows the followtng rule of
production: :

m — n is a production rule for regular grammar where,
m € V, and ne {A, a,b,aA, bB,bA.aB}

for vV, ={A.B}

2 = {a,b}

and A is starting non terminal (start symbol).

Example 1 : Production rules for regular grammar

(AR (i) A - a (ii)A—>b

(Iv) A - aA (VVA->DbB (vi)B—b

(vil) B — aA (viii) B — aB

Solution : All of the (i) to (viii) are regular grammar.

In regular grammar left side of production will always
be only one variable and in right side there will be single

terminal or one non terminal (variable) followed by terminal
or A only. |

Example 2 :
Given V= {A, B, C}
Z={0, I}, A'is start symbol. Productions rules are

following :
@C—oa (b) A > BC (c)A - 0C
(d)AB —» 0B (eYAC 5.0 (HA—> 01

Solution : (a), (c) are production for
(b) A — BC are not in RG
right side

(d)AB — 0B are not i [ i
only one non terminal (v;?algg)because 7 S sonty

(€) AC = 0 (same ag (d)) (not in RG)

() A— 01 are not in RG (Same logic for b).

(2) Type-2 Grammar or Context Free Grammar-

These types of (
productg::; grammar follows the following rule of

regular grammar,
(Regular Grammar) because
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m — n is a production rule for context free grammar
(CFG) where

me VN

andn e (V,UZ)*

Example 3 : Following produetion are under the context
free grammar (CFG) for V, = (S, A, B} and £ = {0, 1}.
Production rules are following-

(aA)S -0 bB)S—>0A (c)A—> A

(d) S —» 0SA (e)S—> 0AB (HS—> B

Solution : Here from (a) to (f) left side of production
are single variable and right side of production are any

combination of terminal and variable means (V,wI)* or

(5.A,B,0, 1)

In the above example

(a)S-» 0 (b)S—> 0A (c)A—> A

are also follow the production rules for regular grammar
or type-3 grammar. So we can say that production rules for
regular grammar is subset of production rule for context free
grammar
» = Production rule for RG ¢ Production rule for CFG

Diagrammatically we can understand this.

So, any grammar that will be regular will also be context
free grammar but the converse is not always true i.e., some
production which follows the CFG property (A — aBB} do
not follow the regular grammar property.

B
Production Rule for CFG

A
Production Rule for
RG

Example 4 :
Given V, = {A,B,C}
T = {0, 1}, A is start symbol

r

(a) A — 0AB (byA — ABO (c)A - AOC
(d)A — O0CB (e)A—> 0 (HAB = 0C
(g) BC— 1A (h)Al— 1B

Selution : From (a) to (e) are production rule for context
free grammar because left hand side are only one variable
and right side have element of (V, UL)*.

(), (g), (h) are not production rule for context free
grammar because left hand side are not only one variable or
non terminal.

(3) Type-1 Grammar or Context Sensitive
Grammar:This types of grammar follows the following rule

of production:
¢Ay > day if a=k and erasing of A is not

permitted.

aAbcD . bebeD
Example 5 : oAV ) av

In the above grammar if A = A and y = beD, ¢ =2. @ =
be then it follows:
dAy— day wherea # A
So it is contex! sensitive grammar

e . BB ABEE
Example 6 . A
When we add A in the above grammar on both sides
then there will be no difference between added ¢ grammar
and original grammar so we can write above grammar as:

ABL _ AbBch
Ay ¢ ay
where = A,y =1, A=Band a= bBC which is not
null.
So above grammar is context sensitive.
Production set for RG ¢ Production set for CFG

Production set for CFG ¢ Production set for CSG

Context Sensitive Grammar

Context Free Grammar

Regular
Grammar

(4) Type - 0 Grammar or Unrestricted Grammar:
Every production which follow the production rule for grammar
are called unrestricted grammar. So, unrestricted grammar
definition is same as definition of grammar which we have
discussed in above section.

= m-—=n

where m &(V,, UE)* which contain at least one variable

and n (Vi UI)* So, ab — cd

are not Grammar on unrestricted grammar because left
side does not contain variables.

* It is called unrestricted grammar because this
grammor does not follow any particular types.

So we can say

Production set for RG < Production set for CFG
Production set for CSG < Production set for unrestricted
grammar.

Diagrammatically:

(T of Comptasion}—

¢ Cormmim

Context Senst A4
rarmmar

Context Free O

pe 2 B lar gfﬂlnl" T
Note : 3 rammar 15 also regu : n
y : .|:y ng 18 desc ibes the elation b/w the four
The follow f r s I

types of languages and automata:

L n Automala
anguag
m"“—ﬂ*r”lf——
confest scnsilive 4+
(rype 1)
—
e —
——— ]

Fig. : Language and corresponding sutomata

Q.23 Make the comment on the following statement Sfinite
state machine with two stack is as powerful as Turing
Machine. [R.T.U. 2010, Raj.Unlv. 2007/

e E————————

Ans. Pushdown automata is differ from finite state

machines in two ways

1. They can use the top of the stack to decide which
transition to take.

2. They can manipulate the stack as pant of performing
a transition.

Pushdown automata choose a transition by indexing a
table by input signal, current state and the symbol at the top
of the stack. This means that those three parameters
completely determine the transition path that is chosen. Finite
state machines just look at the input signal and the current
state : they have no stack to work with. Pushdown automat
add the stack as a parameter for choice i

the stack, or to o
? pop off the 1o
can ailemalivcly ign P of the

choice of manipulat;
the transition table.

s stack. The automaton
e stack and leave it as it is. The

on (or no Manipulation) is determined by

and §
anoth

instea
equiIvi
auton
pushd

gramn
pushd
the gri
autom
harder
aconn
the au
the gra
Defini

s Af

e Afi

e Al

e As

s As
the

e The
e [he
set
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OK L
What is the use of Cook's theorem? Prove it with an
is

tlwl"

{.I.IU. 2012, 2011, 2010, Raj. Univ. 2003/
OR
What is Cook's theorem? Explain. JR.T.U. 2013, 2009]

) that satisfiability is in P if and
;:f:f,:m Nm satisfiability is in P. It remains
1o be shown that if satisfiability is in P, then P=NR

Proof : To do this, we show how to obtain from- any

o time ordeterministic ecision algorithm A and input
I is a formula Q (A, 1) such that Q is satisfiable if A has a
successful termination with input .

If the length of 1 is n and the time complexity of A is p(n)
for some polynomial p(), then the length of Q is O(p*(n) log
n)=O(p"(n)). The time needed to construct Q is also o(p*(n)

. log n). A deterministic algorithm Z to determine the outcome
of A on any input | can be easily obtained.

Algorithm Z simply-computes Q and then uses a
deterministic algorithm for the satisfiability problem to
determine whether Q is satisfiable.

If O (p(m)) is the time needed to determine whether a
formula of length m i satisfiable, then the complexity of Z is
g(f(n)bs n '; c(p’(r_l}log :{L)ll:;] sau::ﬁabq lity is in P, then q(m)
Ole(n))for some polynomial ). Hamrp]s:ﬁ?ﬁ:;ﬁ ;:: isinP
then for every nondeterministc algorithm A in NP swe car
obtain Idﬂﬂ'rniniuic ZinP. We can

i So, the above i
tha if stisfiabifty sin B, hen pap,

Before goin

W B Into the construction of QfromAand I, we

P y
some simplifying assumptions on our nondeterministic

_ 1+ 1he machine on wh; :
oriented. Each w, ich Ais to be executed is word

noarr~y variables are used), g
B+C,DorE, and F, w, a Ome g;
are in one of the i‘ollowing e

. form.
(a) (simple Variable')'l?ls.

(b) (array Variabley. o
(c) (simple \..ariahle.)fis' "
(d) (simple Variable) . (ar Varigy,
where S is a finjte set {§ 'g;
case the function chooses an‘i S
Indexing within an arra i
variable and all index values are o :
arrays are allowed, Clearly, i
falling into one of the nbove,
set of statements of these ty
not alter the class Np,
3. All variables in A are of type i )
4. Algorithm A contains 1 read :lege:ror
only in‘put 10 A s via its parameters A::;;mc. )
all variables (other than the paramt;:e oA
false if boolean). Ts) have Vil

categori“ can Sy
Pes. Henge, thig Mplay

\
y

. 5. AlgoriFhm, A contains no constants, Cleary
in any a.lgomhm can be replaced by new van;?,""\
new variables can be added to the parameterlistuﬁ.
constants associated with them can be apmofm:

6. In addition to simple assignmen statemet
allowed to contain only the following types of stteney

(a) The statement goto k, where k isan instruction ey

(b) Success(), Failure().

(c) Algorithm A may contain type declniing
dimension statements. These are not used during e
of A and so need not be translated into Prob. Thedmss
information is used to allocate array space. It is s
successive elements in an array are assigned to e
words in memory. It is assumed that the insujlclmr'-“
numbered sequentially from 1 tol (ifAhaSl'"swl

Every statement in A has a number. The go‘umsr:'
in (a) and (b) use this numbering scheme 10 cﬂef-':iL
It should be easy to see how to rewrite rep_eB:“:l"en !
50 on statements in terms of goto and i be
statement. Also, note that the gotoK Smlemei::\snm ’
by the statement if true then goto k. So

) e o
ord is w bj eliminated. el
subtraction, and sg o :ez:r!:J:ng Multiplication, addition, 7. Let p(n) be a polynomial such Lhz]u :tak ¥
98 unit of time. If numpers m‘;“mbers one word long take | than p(n) time units on any input of lengll:m; oﬂ"'j
ing operations taye a:;‘gw than 2 word, then the | complexity assumption of 1, A camot c, hat AV
fumber of words making up the | ©ast as many units as the than p(n) words of remory. We assur ). TS
2. A simple expression ; OPBest number, subset cf the words indexed 1,23 "'p(r::icmﬁ i“NRJ
MOst one operator ang all Op:r::dc:l“tmon that contains at | does not restrict the class of decision f;r‘;c o Jisit
ar¢ simple variables ( ~ k < p"»
ie, | this, letf (1), f(2), ...f(k), I K=

1. We can construct another

input

working “"i::;ic algorithm A'that uses ?:p.(n)
;ad""'a o ctcﬂﬂﬂ and solves the same decision
“wnolﬂiﬂ”' e 2P(11 res the behaviour of A. However,

dex 't 1 gimuld

&';rds m:s oes- A sls £, f2), - f(k)' onto thc. se‘:
P;obk'“ p ddress® b function used is determine
& n;ﬂP‘r‘ - ?esﬂ;ﬁ as alable in words p(n) + 1 through
“' :_" 0 an 15 .
dlmalﬂ“:ﬂ 4 dp(n) + i is j, then A’ uses wor‘d ito
EP(ﬂI)% fre ent at “;‘;;l Astored in word j. The simulation of

alue

Let k be the number of distinct words
¢ this time. Let j be a word referenced by
by Aupto A' searches its table to find word
1 that the contents of this word is j. If
+i,1 % N setsk‘.=k+’;i:;k; and‘word
?(n:,,ch i ex:sts.h 2‘::‘“ j. A" makes use of the word i to do

20 _ ‘ |
P(n)+k E\"":;:lld have done with word j. Clearly, A" and A
m1c;1°:same decision problem__. . | |
wlve mpelxity of A; is O(p*(n)) as it lz}kes ﬁ;p(n.) e
The comPE™ | simulate a step of A. Since p*(n) is also

its table an .
uoiﬂ;;t;;;sial in n, restricting our algorithms to use only
apo

secutive words {hat does not alter the classes P and NP.
con.

v
gsal“‘ q
pold s as follows:

1ain NP and Hard NP Complete with example.
[R.T.U. 2016]

OR

Explain the terms P, NP, NP-Hard, NP-complete
with suitable example. Also give relationship
between them. [R.T.U. 2014]

{ B.Tech,

* Given two sets of elem
sets contain same number of |
Any problem that involves
(either minimum or maximum
is known as optimization prol
prohlem, an optimization algc
optimization problem is as fol
* Givei a weighted graph
a minimum spanning tree of
* Given S, does there ex
in the knapsack, and has tota
We can say that a given
‘S’ only when A produces th
set of string is referred to a It
also be viewed as a set L o
Thus, an algorithm A accep
output ‘yes’ on input ‘S’ 1
produces output ‘no’.

It is to be noted that the
decision problems (or lang
the worst—case running time
SeL, in polynomial time p(
and produces output ‘yes’. |
definition does not say any
to this situation as a comple
‘yes’ for a given set of bin
L.

We can also create a
complement of L if give

Ans(i) P : P is the set of decision problems with a yes—no
answer that is polynomial bound.

A problem is said to be polynomial-bound if there exists
2polynomial bound algorithm for it. It is also to be noted that
notfor all the problems the class Phas “acceptably efficient”

?lg,mi"hm-A‘SU, ifa problem does not belong to class P then it
Sintractable,

is Note : An algorithm is said to be polynomial bounded if
plexity is bound by a polynomial function
That means, for each input of size n the
tes after atmost P(n) steps; For instance,

Worsl—c ase com

P of input size n.
FRorithm terming
111 + 24n2 +65
Decision prop
Single bit out
u
€ proble, P

M s either zerg or one.

Or ingty,
ne .
“Gi ¢ some decision problems are :

IVen tw, ) .
of$, o e Strings S, and S,, does S, a substring

\

ems : The problems under this class have
t which shows 0 or 1 i.e., the answer for

language L in polynomial t
L, showing such decision |
(ii) NP : The complexil
class P but allows for the |
But, in the case of NP pr
operation:

Select : This probler
deterministic way and as¢
takes the advantage of S
say that Ais non—determin
calls to Select opemiop. t
acceptance if there exists
that this operation’s work
choices.

The complexity class
(or languages L) tr_m can
inthe polynomial time. T
an input S, there existsas

A so that it produoes_ow
where n is the input size

—
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) -y LS. Pa;
poly algorithm for Z, then by using your —
from SA‘I} to Z. anyone will be able to solve any SAT prob]
instance in poly-time, and hence would be able tointv o
NP-class problems in poly-time (by cook’s theorem) o

polytransformatiq

%—__
Q.9 Prove that the circuit satisfiahili
abilit i
complete, g me;’:';'bfsz;:/ ‘
AU 4q

-—__.—___“
A‘ns. Wc ct.?msrruct a non deterministic algorithm for accepti
circuit-sat in polynomial time. We first use the choose mrftI:n;
to “‘guess” the values of the input nodes as well as the ou .
value of each logic gate. Then, we simply visit each ];Pl_l
gate g in C, that is, each vertex with at least one incom'gl.
edge. We then check that the “guessed” value for the outlrlj
of g is in fact the correct value for g’s boolean function bI:!
an AND, OR, or NOT, based on the given values f‘c:r lhlc
Imputs for g. This evaluation process can easily be performex
in polynomial time. If any check for a gate fails, or if th
“guessed” value for the output is 0, then we outpu’t “no.” If
on the other hand, the check for every gate succeeds anc‘l the
output is “1,” the algorithm outputs “yes.” Thus, if there i:
indeed a satisfying assignment of input values for C, ther
there is a possible collection of outcomes to the choosc
statements so that the algorithm will output ““yes™ in polynomia
time. Likewise, if there is a collection of outcomes to the
choose statements so that the algorithm outputs “yes” ir
polynomial time algorithm, there must be a satisfying
assignment of input values for C. Therefore, circuit-sat is ir
NP.

rite algorithm for approximation for vertex cover
[R.T.U. 2014,

= A 4
problem with suitable example.

Ans. Vertex Cover Problem : Refer 1o (.1

Let us consider that ‘B, be a given instance of the 3-SAT
problem, that is, a CNF Boolean formula, where each clause
has exactly three literals. Now, we create a graph G and an
integer K such that G has a vertex cover of size at most K i
and only if ‘By," is satisfiable. For this we add the following :
# For each input operand I, in the Boolean formula "By’
we add two vertices in G one of which is labelled as [, and
other as | . After this we add the edge (I, 1,).

e For each clause C, = (m + n + z) in By, we form a
triangle consisting of three vertices and three edges.

» At least two vertices per triangle must be in the cover
for the edges in the triangle, for a total of at least 2C vertices.
e Lastly, we create a flat structure where each literal is
connected to the corresponding vertices in the triangle which
shares the same literal.

(Theory of Computation):

Fig.

The above graph will have a vertex cover of sizen +2C
ifand only if the expression is satisfiable. Every cover must
have at least n + 2C vertices. For showing that our reduction
is correct, we have to show the following : ;

For every satisfying truth assignment there exists
a cover : For this select the n vertices that correspond to the
true literals to be in the cover. As it is a satisfying truth
assignment, atleast one of the three cross edges associated
with each clause must already be covered. Now, select the
other two vertices to complete the cover.
There exists a satisfying truth assignment for every
vertex cover : For this, every vertex cover must contain n
first level vertices and 2C second level vertices. Let the truth
assignment be defined by the first level vertices. To get the
cover at last, one cross—edge must be covered, so that the
truth assignment satisfies.
1t can be noticed that for a cover to have n + 2C vertices,
all the cross edges must be incident on a selected vertex. Let
us consider that the n selected vertices from the first level
corresponds to true literals. 1f there exists a satisfying truth
assignment, then that means atleast one of the three cross
edges from each triangle is incident on a true literal vertex. It
is to be noted that by adding the other two vertices to the
cover, we cover all the edges associated with the clause.
Vertex-cover problem is to find a vertex cover of
minirrum size. Using approximation algorithm we have to find
a sub-optimal solution to the problem. As a result of this
algorithm, we will get a vertex-cover with size no more than
twice the size of an optimal vertex cover.
Algorithm Approx_ vertex_ cover
input to the algorithm is the graph G.
Step L. Initialize the vertex-cover D to be null.
Ce o
Step 2. The set of edges in G is E.
Step 3. Repeat steps 4 to 6 till the sct of edges E is empty.
Step 4. Choose an arbitrary edge (u, v) of E.
Step 5. Add the endpoints u, v to vertex cover C.
Step 6. Remover every edge incident on either u or v from
the set of edges E.
Step 7. return C and Exit. ;
The running time of this algorithm is O(V + E),

Example

c=6

E = {ab, ad, bd, de, af, cf, ef, ce)
pick bd aribitrarily
i with bord, that is ab, bd,

Remove the edges associated

ad and de.

Now E = {af, cf, ef, ce}

Pick cf at random
C={b,d,c,f}
Remove edges associated with ¢ or f, that is af, cf, ef
and ce
Now E= ¢
So, stop
The coveris ¢

- ~
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Q.11 Solve the Travelling Salesman Problem (TSP) for
the following graph by using the branch and bound
algorithm, the tour must be start from vertex 1 and
generate only tour in which 2 is visited before 3.

[RT.U. 2013

|




OR
Prove that Hamilton cycle problem in NP complete.

[R.T.U. 2016]

OR
Show that the Hamiiton Cycle problem is NP-compliete.

[R.TU. 2014)

Ans. Let us define a nondeterministic algorithm A that takes,
as input, a graph G encoded as an adjacency list in binary
notation, with the vertices numbered 1 to N. We define A to
first iteratively call the choose method to determine a sequence
S of N+ I numbers from | to N. Then, we have A check that
each number from 1 to N appears exactly once in S (for
example, by sorting 5), except for the first and Jast numbers
in S, which should be the same. Then, we verify that the
sequence S defines a cycle of vertices and edges in G A
binary encoding of the sequence S is clearly of size at most n,
where n is the size of the input. Moreover, both of the checks
made on the sequence S can be done in polynomial time in n.

Observe that if there is a cycle in G that visits each
vertex of G exactly once, returning to its starting vertex, then
there is a sequence S for which A will output “yes.” Likewise,
if A outputs “ves,” then it has found a cycle in G that visits
each vertex of G exactly once, returning to its starting point.
That is, A non-deterministically accepts the language
HAMILTONIAN-CYCLE. In other words. Hamiltonian-
Cycle is in NP.

Lopc Gues: |

Fig. : An example of Boolean circuit.

Our next example is a problem related to circuit design
testing. A Boolean circuit is a directed graph where each node,
called a logic gate, corresponds to a simple boolean function,
AND, OR, or NOT. The incoming edges for a logic gate
correspond to inputs for its boolean function and the outgoing
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Approximation - Traveling Sales Person Prjjy
Input: A complete graph G (V. E)
QOutput: A Hamiltonian cycle

. Select a “root” vertex r e V (G).

Use MST-Prim (G ¢, r) to compute aminimuse:

tree from r.

3. Assume L to be the sequence of vertices s

preorder tree walk of T. !

4. Return the Hamiltonian cycle H that visist

in the order L. "

The next set of figures show the workisg!
proposed algorithm.
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